1,698 research outputs found

    Cortical thinning in young psychosis and bipolar patients correlate with common neurocognitive deficits

    Get PDF
    Background: People in midlife with established psychosis or bipolar disorder exhibit patterns of cortical thinning across several brain regions. It is unclear whether these patterns are indicative of a continuously active pathological process, residual effects of an earlier illness phase or pre-illness onset developmental risk factors. Here, we investigated whether cortical thinning is evident in younger patients in the early phase of psychosis or bipolar disorder and the relationship between cortical thinning and neurocognitive performance in young people. Methods: Magnetic resonance imaging was obtained from a sample of young patients with psychosis (n = 40; mean age 23.5 years), bipolar disorder (n = 73; mean age 21.9 years) or controls (n = 49; mean age 24.2 years). Group differences in cortical thickness were assessed using statistical difference maps, and regions of cortical thinning were correlated with medication dosage and performance on neurocognitive tasks. As initial comparisons using multiple corrections found no differences between the groups, follow-up analysis with a significance threshold of p < 0.001 was performed. Results and discussion: As distinct from reported findings in older subjects, young patients with psychosis have less extensive thinning in parietal-temporal areas and do not demonstrate significant thinning in the insula or dorsal lateral prefrontal cortex. Young patients with bipolar disorder exhibit cortical thinning in regions more consistent with those previously reported in paediatric bipolar patients. Although there were some differences in the regions of cortical thinning between the two groups, the shared regions of cortical thinning were correlated with neurocognitive deficits in visual sustained attention, semantic verbal fluency and verbal learning and memory that are commonly reported in young people with either psychosis or bipolar disorder

    Developing a novel dual-injection FDG-PET imaging methodology to study the functional neuroanatomy of gait

    Get PDF
    \ua9 2024Gait is an excellent indicator of physical, emotional, and mental health. Previous studies have shown that gait impairments in ageing are common, but the neural basis of these impairments are unclear. Existing methodologies are suboptimal and novel paradigms capable of capturing neural activation related to real walking are needed. In this study, we used a hybrid PET/MR system and measured glucose metabolism related to both walking and standing with a dual-injection paradigm in a single study session. For this study, 15 healthy older adults (10 females, age range: 60.5-70.7 years) with normal cognition were recruited from the community. Each participant received an intravenous injection of [18F]-2-fluoro-2-deoxyglucose (FDG) before engaging in two distinct tasks, a static postural control task (standing) and a walking task. After each task, participants were imaged. To discern independent neural functions related to walking compared to standing, we applied a bespoke dose correction to remove the residual 18F signal of the first scan (PETSTAND) from the second scan (PETWALK) and proportional scaling to the global mean, cerebellum, or white matter (WM). Whole-brain differences in walking-elicited neural activity measured with FDG-PET were assessed using a one-sample t-test. In this study, we show that a dual-injection paradigm in healthy older adults is feasible with biologically valid findings. Our results with a dose correction and scaling to the global mean showed that walking, compared to standing, increased glucose consumption in the cuneus (Z = 7.03), the temporal gyrus (Z = 6.91) and the orbital frontal cortex (Z = 6.71). Subcortically, we observed increased glucose metabolism in the supraspinal locomotor network including the thalamus (Z = 6.55), cerebellar vermis and the brainstem (pedunculopontine/mesencephalic locomotor region). Exploratory analyses using proportional scaling to the cerebellum and WM returned similar findings. Here, we have established the feasibility and tolerability of a novel method capable of capturing neural activations related to actual walking and extended previous knowledge including the recruitment of brain regions involved in sensory processing. Our paradigm could be used to explore pathological alterations in various gait disorders

    Thermodynamical Cost of Accessing Quantum Information

    Full text link
    Thermodynamics is a macroscopic physical theory whose two very general laws are independent of any underlying dynamical laws and structures. Nevertheless, its generality enables us to understand a broad spectrum of phenomena in physics, information science and biology. Recently, it has been realised that information storage and processing based on quantum mechanics can be much more efficient than their classical counterpart. What general bound on storage of quantum information does thermodynamics imply? We show that thermodynamics implies a weaker bound than the quantum mechanical one (the Holevo bound). In other words, if any post-quantum physics should allow more information storage it could still be under the umbrella of thermodynamics.Comment: 3 figure

    Information erasure and the generalized second law of black hole thermodynamics

    Get PDF
    We consider the generalized second law of black hole thermodynamics in the light of quantum information theory, in particular information erasure and Landauer’s principle (namely, that erasure of information produces at least the equivalent amount of entropy). A small quantum system outside a black hole in the Hartle-Hawking state is studied, and the quantum system comes into thermal equilibrium with the radiation surrounding the black hole. For this scenario, we present a simple proof of the generalized second law based on quantum relative entropy. We then analyze the corresponding information erasure process, and confirm our proof of the generalized second law by applying Landauer’s principle

    Experimental Realization of an Optical One-Way Barrier for Neutral Atoms

    Full text link
    We demonstrate an asymmetric optical potential barrier for ultracold 87 Rb atoms using laser light tuned near the D_2 optical transition. Such a one-way barrier, where atoms impinging on one side are transmitted but reflected from the other, is a realization of Maxwell's demon and has important implications for cooling atoms and molecules not amenable to standard laser-cooling techniques. In our experiment, atoms are confined to a far-detuned dipole trap consisting of a single focused Gaussian beam, which is divided near the focus by the barrier. The one-way barrier consists of two focused laser beams oriented almost normal to the dipole-trap axis. The first beam is tuned to have a red (blue) detuning from the F=1 -> F' (F=2 -> F') hyperfine transitions, and thus presents a barrier only for atoms in the F=2 ground state, while letting F=1 atoms pass. The second beam pumps the atoms to F=2 on the reflecting side of the barrier, thus producing the asymmetry.Comment: 5 pages, 4 figures; includes changes to address referee comment

    A quantum-mechanical Maxwell's demon

    Get PDF
    A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.Comment: 13 pages, Te

    In vitro elution of amikacin, cefazolin, gentamicin, ampicillin/sulbactam, and meropenem from a commercially available calcium sulfate delivery kit

    Get PDF
    IntroductionThe use of implantable antibiotic beads has become a frequent treatment modality for the management of surgical site infections in human and veterinary medicine. The objective of this study is to describe the elution kinetics of five antibiotics from a commercially available calcium sulfate antibiotic delivery kit. A secondary goal was to compare elution concentrations with minimal inhibitory concentrations (MIC) for commonly encountered bacteria from the University of Florida’s veterinary microbiology laboratory database.MethodsCalcium sulfate powder was combined with amikacin, cefazolin, gentamicin, ampicillin/sulbactam, and meropenem. Triplicates of three antibiotic-loaded beads were immersed in 5 mL of phosphate-buffered saline (PBS) and kept at 37°C under constant agitation. Antibiotic-conditioned PBS was sampled at 14 time points from 1-h to 30 days and analyzed by liquid chromatography to determine the antibiotic concentration.ResultsAll beads eluted concentrations of antibiotics for the 30-day sampling period, except for ampicillin/sulbactam, with the most antibiotics being eluted within the first week. The concentration of antibiotics within the eluent within the first 3–9 days (3- and 5-mm beads, respectively) was greater than the MIC of common isolates. The 5 mm bead samples were superior in maintaining higher concentrations for a longer period, compared to the 3-mm beads.DiscussionCSH beads eluted antibiotics over the 30-day course of the study. Most of the antibiotic elution occurred within the first week and was maintained above the MIC of commonly encountered isolates. This information may be useful for clinical decision making for treatment of local infections encountered in practice

    The Physics of Maxwell's demon and information

    Full text link
    Maxwell's demon was born in 1867 and still thrives in modern physics. He plays important roles in clarifying the connections between two theories: thermodynamics and information. Here, we present the history of the demon and a variety of interesting consequences of the second law of thermodynamics, mainly in quantum mechanics, but also in the theory of gravity. We also highlight some of the recent work that explores the role of information, illuminated by Maxwell's demon, in the arena of quantum information theory.Comment: 24 pages, 13 figures. v2: some refs added, figs improve

    Prediction of internalizing and externalizing symptoms in late childhood from attention-deficit/hyperactivity disorder symptoms in early childhood.

    Get PDF
    Limited analyses based on national samples have assessed whether early attention-deficit/hyperactivity disorder (ADHD) symptoms predict later internalizing and externalizing symptoms in youth and the influence of sex and pubertal timing on subsequent psychiatric symptoms. This study analyzed data (n = 2818) from the Environmental influences on Child Health Outcomes Program national cohort. Analyses used data from early childhood (mean age = 5.3 years) utilizing parent-reported ADHD symptoms to predict rates of internalizing and externalizing symptoms from late childhood/adolescence (mean age = 11.9 years). Within a subsample age at peak height velocity (APHV) acted as a proxy to assess pubertal timing from early childhood (mean age = 5.4 years) to adolescence (mean age = 12.3 years). Early-childhood ADHD symptoms predicted later psychiatric symptoms, including anxiety, depression, aggressive behavior, conduct problems, oppositional defiant disorder, and rule-breaking behavior. Earlier APHV was associated with increased Conduct Disorder symptoms from late childhood to adolescence for females only. A stronger relation between ADHD symptoms and later aggression was observed in females with earlier APHV, whereas this same pattern with aggression, conduct problems and depression was observed in males with later APHV. Clinicians should consider that both young girls and boys with elevated ADHD symptoms, particularly with off-set pubertal timing, may be at risk for later psychiatric symptoms
    corecore