2,400 research outputs found

    Entanglement between an electron and a nuclear spin 1/2

    Get PDF
    We report on the preparation and detection of entangled states between an electron spin 1/2 and a nuclear spin 1/2 in a molecular single crystal. These were created by applying pulses at ESR (9.5 GHz) and NMR (28 MHz) frequencies. Entanglement was detected by using a special entanglement detector sequence based on a unitary back transformation including phase rotation.Comment: 4 pages, 3 figure

    Dynamics of Global Entanglement under Decoherence

    Full text link
    We investigate the dynamics of global entanglement, the Meyer-Wallach measure, under decoherence, analytically. We study two important class of multi-partite entangled states, the Greenberger-Horne-Zeilinger and the W state. We obtain exact results for various models of system-environment interactions (decoherence). Our results shows distinctly different scaling behavior for these initially entangled states indicating a relative robustness of the W state, consistent with previous studies.Comment: 5 pages and 5 figure

    Passive decoy state quantum key distribution: Closing the gap to perfect sources

    Full text link
    We propose a quantum key distribution scheme which closely matches the performance of a perfect single photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and present-day, non-ideal photon-number detection. Arbitrary experimental imperfections which lead to bit errors are included. We select decoy states by classical post-processing. This allows to improve the effective signal statistics and achievable distance.Comment: 4 pages, 3 figures. State preparation correcte

    Entangled photons from a strongly coupled quantum dot-cavity system

    Full text link
    A quantum dot strongly coupled to a photonic crystal has been recently proposed as a source of entangled photon pairs [R. Johne et al., Phys. Rev. Lett. 100, 240404 (2008)]. The biexction decay via intermediate polariton states can be used to overcome the natural splitting between the exciton states coupled to the horizontally and vertically polarized light modes, so that high degrees of entanglement can be expected. We investigate theoretically the features of realistic dot-cavity systems, including the effect of the different oscillator strength of excitons resonances coupled to the different polarizations of light. We show that in this case, an independent adjustment of the cavity resonances is needed in order to keep a high entanglement degree. We also consider the case when the biexciton-exciton transition is also strongly coupled to a cavity mode. We show that a very fast emission rate can be achieved allowing the repetition rates in the THz range. Such fast emission should however be paid for by a very complex tuning of the many strongly coupled resonances involved and by a loss of quantum efficiency. Altogether a strongly coupled dot-cavity system seems to be very promising as a source of entangled photon pairs.Comment: 7 pages, 5 figure

    Quantum state transfer and entanglement distribution among distant nodes in a quantum network

    Get PDF
    We propose a scheme to utilize photons for ideal quantum transmission between atoms located at spatially-separated nodes of a quantum network. The transmission protocol employs special laser pulses which excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wavepacket that will enter a cavity at the receiving node and be absorbed by an atom there with unit probability. Implementation of our scheme would enable reliable transfer or sharing of entanglement among spatially distant atoms.Comment: 4 pages, 3 postscript figure

    A deterministic cavity-QED source of polarization entangled photon pairs

    Get PDF
    We present two cavity quantum electrodynamics proposals that, sharing the same basic elements, allow for the deterministic generation of entangled photons pairs by means of a three-level atom successively coupled to two single longitudinal mode high-Q optical resonators presenting polarization degeneracy. In the faster proposal, the three-level atom yields a polarization entangled photon pair via two truncated Rabi oscillations, whereas in the adiabatic proposal a counterintuitive Stimulated Raman Adiabatic Passage process is considered. Although slower than the former process, this second method is very efficient and robust under fluctuations of the experimental parameters and, particularly interesting, almost completely insensitive to atomic decay.Comment: 5 pages, 5 figure

    Using of small-scale quantum computers in cryptography with many-qubit entangled states

    Full text link
    We propose a new cryptographic protocol. It is suggested to encode information in ordinary binary form into many-qubit entangled states with the help of a quantum computer. A state of qubits (realized, e.g., with photons) is transmitted through a quantum channel to the addressee, who applies a quantum computer tuned to realize the inverse unitary transformation decoding of the message. Different ways of eavesdropping are considered, and an estimate of the time needed for determining the secret unitary transformation is given. It is shown that using even small quantum computers can serve as a basis for very efficient cryptographic protocols. For a suggested cryptographic protocol, the time scale on which communication can be considered secure is exponential in the number of qubits in the entangled states and in the number of gates used to construct the quantum network

    Geometry of the 3-Qubit State, Entanglement and Division Algebras

    Full text link
    We present a generalization to 3-qubits of the standard Bloch sphere representation for a single qubit and of the 7-dimensional sphere representation for 2 qubits presented in Mosseri {\it et al.}\cite{Mosseri2001}. The Hilbert space of the 3-qubit system is the 15-dimensional sphere S15S^{15}, which allows for a natural (last) Hopf fibration with S8S^8 as base and S7S^7 as fiber. A striking feature is, as in the case of 1 and 2 qubits, that the map is entanglement sensitive, and the two distinct ways of un-entangling 3 qubits are naturally related to the Hopf map. We define a quantity that measures the degree of entanglement of the 3-qubit state. Conjectures on the possibility to generalize the construction for higher qubit states are also discussed.Comment: 12 pages, 2 figures, final versio

    Quantum complexities of ordered searching, sorting, and element distinctness

    Full text link
    We consider the quantum complexities of the following three problems: searching an ordered list, sorting an un-ordered list, and deciding whether the numbers in a list are all distinct. Letting N be the number of elements in the input list, we prove a lower bound of \frac{1}{\pi}(\ln(N)-1) accesses to the list elements for ordered searching, a lower bound of \Omega(N\log{N}) binary comparisons for sorting, and a lower bound of \Omega(\sqrt{N}\log{N}) binary comparisons for element distinctness. The previously best known lower bounds are {1/12}\log_2(N) - O(1) due to Ambainis, \Omega(N), and \Omega(\sqrt{N}), respectively. Our proofs are based on a weighted all-pairs inner product argument. In addition to our lower bound results, we give a quantum algorithm for ordered searching using roughly 0.631 \log_2(N) oracle accesses. Our algorithm uses a quantum routine for traversing through a binary search tree faster than classically, and it is of a nature very different from a faster algorithm due to Farhi, Goldstone, Gutmann, and Sipser.Comment: This new version contains new results. To appear at ICALP '01. Some of the results have previously been presented at QIP '01. This paper subsumes the papers quant-ph/0009091 and quant-ph/000903

    Entanglement of electrons in interacting molecules

    Get PDF
    Quantum entanglement is a concept commonly used with reference to the existence of certain correlations in quantum systems that have no classical interpretation. It is a useful resource to enhance the mutual information of memory channels or to accelerate some quantum processes as, for example, the factorization in Shor's Algorithm. Moreover, entanglement is a physical observable directly measured by the von Neumann entropy of the system. We have used this concept in order to give a physical meaning to the electron correlation energy in systems of interacting electrons. The electronic correlation is not directly observable, since it is defined as the difference between the exact ground state energy of the many--electrons Schroedinger equation and the Hartree--Fock energy. We have calculated the correlation energy and compared with the entanglement, as functions of the nucleus--nucleus separation using, for the hydrogen molecule, the Configuration Interaction method. Then, in the same spirit, we have analyzed a dimer of ethylene, which represents the simplest organic conjugate system, changing the relative orientation and distance of the molecules, in order to obtain the configuration corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late
    • …
    corecore