32 research outputs found

    Mobilization of putative high-proliferative-potential endothelial colony-forming cells during antihypertensive treatment in patients with essential hypertension

    Get PDF
    Recent studies have shown that in response to vascular damage or ischemia, bone marrow-derived endothelial progenitor cells (EPCs) are recruited into the circulation. To investigate whether antihypertensive treatment has an influence on the number of circulating EPCs, patients with essential hypertension were treated either with the angiotensin receptor antagonist telmisartan, the calcium channel blocker nisoldipine, or their combination for 6 weeks. At baseline and after 3 and 6 weeks of treatment, EPCs were identified and quantified by fluorescence-activated cell sorting (FACS) analysis and by their capacity to generate colony-forming units of the endothelial lineage (CFU-EC) in a methylcellulose-based assay. During treatment, patients in the nisoldipine groups, but not in the telmisartan group, showed a significant mobilization of EPCs, which in part had the capacity to generate large-sized colonies comprising more than 1,000 cells. Moreover, a remarkable correlation between the number of CFU-EC and the number of circulating CD133(+)/CD34(+)/CD146(+) cells was observed, thereby providing strong evidence that cells with this phenotype represent functional EPCs. No correlation was found between the numbers of CFU-EC and the blood pressure levels at any time point during the treatment. Hence, nisoldipine-induced mobilization of EPCs might represent a novel mechanism by which this antihypertensive compound independently of its blood pressure-lowering effect contributes to vasoprotection in patients with essential hypertension

    Asymmetric Dimethylarginine Determines the Improvement of Endothelium-Dependent Vasodilation by Simvastatin Effect of Combination With Oral L-Arginine

    Get PDF
    ObjectivesWe hypothesized that the level of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of endothelial nitric oxide (NO) synthase (eNOS), might determine the endothelial effects of statins.BackgroundEndothelial NO synthase is up-regulated by statins. However, statins failed to improve endothelial function in some studies. Asymmetric dimethylarginine inhibits eNOS by a mechanism that is reversible by L-arginine.MethodsNinety-eight clinically asymptomatic elderly subjects had their plasma ADMA levels screened. Those in the highest (high ADMA, n = 15) and lowest quartiles of the ADMA distribution (low ADMA, n = 13) were eligible to receive, in a randomized order, simvastatin (40 mg/day), L-arginine (3 g/day), or a combination of both, each for 3 weeks. Endothelium-dependent vasodilation (EDD) was assessed by brachial artery ultrasound.ResultsSimvastatin had no effect on EDD in subjects with high ADMA (6.2 ± 1.2% vs. 6.1 ± 0.9%), whereas simvastatin plus L-arginine significantly improved EDD (9.8 ± 1.5% vs. 5.3 ± 0.8%; p < 0.01). In subjects with low ADMA, simvastatin improved endothelial function when given alone (9.5 ± 3.2% vs. 6.1 ± 3.8%; p < 0.001) or in combination with L-arginine (9.0 ± 3.1% vs. 6.3 ± 3.3%; p = 0.001). L-arginine alone improved endothelial function in both groups. Endothelium-independent vasodilation was not affected.ConclusionsSimvastatin does not enhance endothelial function in subjects with elevated ADMA, whereas it does so in patients with low ADMA. Combination of simvastatin with oral L-arginine improves endothelial function in subjects with high ADMA, but has no additional effect in subjects with low ADMA. As NO-mediated effects may play a major role in the therapeutic effects of statins, ADMA concentration is an important factor that influences the “pleiotropic” effects of simvastatin

    Supplementary Notes - Defect engineering of silicon with ion pulses from laser acceleration

    Get PDF
    14 pages. -- Supplementary Note 1. Time lapse movie showing evaporation of the aluminum foil mask during 100 shots. -- Supplementary Note 2. Photoluminescence (PL) and Secondary Ion Mass Spectrometry (SIMS) data correlation to PL data. -- Supplementary Note 3. Details on energy deposition and heat calculations. -- Supplementary Note 4. Details on Nuclear Reaction Analysis (NRA). -- Supplementary Note 5. Details on channeling Rutherford Backscattering (ch-RBS). -- Supplementary Note 6. Supplemental material on Density Functional Theory (DFT) calculations of G and W-centers in silicon.Peer reviewe

    Defect engineering of silicon with ion pulses from laser acceleration

    Get PDF
    Defect engineering is foundational to classical electronic device development and for emerging quantum devices. Here, we report on defect engineering of silicon with ion pulses from a laser accelerator in the laser intensity range of 1019 W cm−2 and ion flux levels of up to 1022 ions cm−2 s−1, about five orders of magnitude higher than conventional ion implanters. Low energy ions from plasma expansion of the laser-foil target are implanted near the surface and then diffuse into silicon samples locally pre-heated by high energy ions from the same laser-ion pulse. Silicon crystals exfoliate in the areas of highest energy deposition. Color centers, predominantly W and G-centers, form directly in response to ion pulses without a subsequent annealing step. We find that the linewidth of G-centers increases with high ion flux faster than the linewidth of W-centers, consistent with density functional theory calculations of their electronic structure. Intense ion pulses from a laser-accelerator drive materials far from equilibrium and enable direct local defect engineering and high flux doping of semiconductors.This work was supported by the Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Experiments at the BELLA Center were enabled through facilities developed by HEP and LaserNetUS. TS and JGL gratefully acknowledge support by the coordinated research project “F11020” of the International Atomic Energy Agency (IAEA). LZT and JS were supported by the Molecular Foundry, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231Peer reviewe

    The Role of ABCG2 in the Pathogenesis of Primary Hyperuricemia and Gout—An Update

    No full text
    Urate homeostasis in humans is a complex and highly heritable process that involves i.e., metabolic urate biosynthesis, renal urate reabsorption, as well as renal and extrarenal urate excretion. Importantly, disturbances in urate excretion are a common cause of hyperuricemia and gout. The majority of urate is eliminated by glomerular filtration in the kidney followed by an, as yet, not fully elucidated interplay of multiple transporters involved in the reabsorption or excretion of urate in the succeeding segments of the nephron. In this context, genome-wide association studies and subsequent functional analyses have identified the ATP-binding cassette (ABC) transporter ABCG2 as an important urate transporter and have highlighted the role of single nucleotide polymorphisms (SNPs) in the pathogenesis of reduced cellular urate efflux, hyperuricemia, and early-onset gout. Recent publications also suggest that ABCG2 is particularly involved in intestinal urate elimination and thus may represent an interesting new target for pharmacotherapeutic intervention in hyperuricemia and gout. In this review, we specifically address the involvement of ABCG2 in renal and extrarenal urate elimination. In addition, we will shed light on newly identified polymorphisms in ABCG2 associated with early-onset gout

    ABC Transport Proteins in Cardiovascular Disease—A Brief Summary

    No full text
    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters may play an important role in the pathogenesis of atherosclerotic vascular diseases due to their involvement in cholesterol homeostasis, blood pressure regulation, endothelial function, vascular inflammation, as well as platelet production and aggregation. In this regard, ABC transporters, such as ABCA1, ABCG5 and ABCG8, were initially found to be responsible for genetically-inherited syndromes like Tangier diseases and sitosterolemia. These findings led to the understanding of those transporter’s function in cellular cholesterol efflux and thereby also linked them to atherosclerosis and cardiovascular diseases (CVD). Subsequently, further ABC transporters, i.e., ABCG1, ABCG4, ABCB6, ABCC1, ABCC6 or ABCC9, have been shown to directly or indirectly affect cellular cholesterol efflux, the inflammatory response in macrophages, megakaryocyte proliferation and thrombus formation, as well as vascular function and blood pressure, and may thereby contribute to the pathogenesis of CVD and its complications. Furthermore, ABC transporters, such as ABCB1, ABCC2 or ABCG2, may affect the safety and efficacy of several drug classes currently in use for CVD treatment. This review will give a brief overview of ABC transporters involved in the process of atherogenesis and CVD pathology. It also aims to briefly summarize the role of ABC transporters in the pharmacokinetics and disposition of drugs frequently used to treat CVD and CVD-related complications

    Active RhoA Exerts an Inhibitory Effect on the Homeostasis and Angiogenic Capacity of Human Endothelial Cells

    No full text
    Background The small GTPase RhoA (Ras homolog gene family, member A) regulates a variety of cellular processes, including cell motility, proliferation, survival, and permeability. In addition, there are reports indicating that RhoA‐ROCK (rho associated coiled‐coil containing protein kinase) activation is essential for VEGF (vascular endothelial growth factor)‐mediated angiogenesis, whereas other work suggests VEGF‐antagonistic effects of the RhoA‐ROCK axis. Methods and Results To elucidate this issue, we examined human umbilical vein endothelial cells and human coronary artery endothelial cells after stable overexpression (lentiviral transduction) of constitutively active (G14V/Q63L), dominant‐negative (T19N), or wild‐type RhoA using a series of in vitro angiogenesis assays (proliferation, migration, tube formation, angiogenic sprouting, endothelial cell viability) and a human umbilical vein endothelial cells xenograft assay in immune‐incompetent NOD scid gamma mice in vivo. Here, we report that expression of active and wild‐type RhoA but not dominant‐negative RhoA significantly inhibited endothelial cell proliferation, migration, tube formation, and angiogenic sprouting in vitro. Moreover, active RhoA increased endothelial cell death in vitro and decreased human umbilical vein endothelial cell‐related angiogenesis in vivo. Inhibition of RhoA by C3 transferase antagonized the inhibitory effects of RhoA and strongly enhanced VEGF‐induced angiogenic sprouting in control‐treated cells. In contrast, inhibition of RhoA effectors ROCK1/2 and LIMK1/2 (LIM domain kinase 1/2) did not significantly affect RhoA‐related effects, but increased angiogenic sprouting and migration of control‐treated cells. In agreement with these data, VEGF did not activate RhoA in human umbilical vein endothelial cells as measured by a Förster resonance energy transfer–based biosensor. Furthermore, global transcriptome and subsequent bioinformatic gene ontology enrichment analyses revealed that constitutively active RhoA induced a differentially expressed gene pattern that was enriched for gene ontology biological process terms associated with mitotic nuclear division, cell proliferation, cell motility, and cell adhesion, which included a significant decrease in VEGFR‐2 (vascular endothelial growth factor receptor 2) and NOS3 (nitric oxide synthase 3) expression. Conclusions Our data demonstrate that increased RhoA activity has the potential to trigger endothelial dysfunction and antiangiogenic effects independently of its well‐characterized downstream effectors ROCK and LIMK

    The Functional Interaction of EGFR with AT1R or TP in Primary Vascular Smooth Muscle Cells Triggers a Synergistic Regulation of Gene Expression

    No full text
    In vivo, cells are simultaneously exposed to multiple stimuli whose effects are difficult to distinguish. Therefore, they are often investigated in experimental cell culture conditions where stimuli are applied separately. However, it cannot be presumed that their individual effects simply add up. As a proof-of-principle to address the relevance of transcriptional signaling synergy, we investigated the interplay of the Epidermal Growth Factor Receptor (EGFR) with the Angiotensin-II (AT1R) or the Thromboxane-A2 (TP) receptors in murine primary aortic vascular smooth muscle cells. Transcriptome analysis revealed that EGFR-AT1R or EGFR-TP simultaneous activations led to different patterns of regulated genes compared to individual receptor activations (qualitative synergy). Combined EGFR-TP activation also caused a variation of amplitude regulation for a defined set of genes (quantitative synergy), including vascular injury-relevant ones (Klf15 and Spp1). Moreover, Gene Ontology enrichment suggested that EGFR and TP-induced gene expression changes altered processes critical for vascular integrity, such as cell cycle and senescence. These bioinformatics predictions regarding the functional relevance of signaling synergy were experimentally confirmed. Therefore, by showing that the activation of more than one receptor can trigger a synergistic regulation of gene expression, our results epitomize the necessity to perform comprehensive network investigations, as the study of individual receptors may not be sufficient to understand their physiological or pathological impact

    EGFR activation differentially affects the inflammatory profiles of female human aortic and coronary artery endothelial cells

    No full text
    Abstract Endothelial cells (EC) are key players in vascular function, homeostasis and inflammation. EC show substantial heterogeneity due to inter-individual variability (e.g. sex-differences) and intra-individual differences as they originate from different organs or vessels. This variability may lead to different responsiveness to external stimuli. Here we compared the responsiveness of female human primary EC from the aorta (HAoEC) and coronary arteries (HCAEC) to Epidermal Growth Factor Receptor (EGFR) activation. EGFR is an important signal integration hub for vascular active substances with physiological and pathophysiological relevance. Our transcriptomic analysis suggested that EGFR activation differentially affects the inflammatory profiles of HAoEC and HCAEC, particularly by inducing a HCAEC-driven leukocyte attraction but a downregulation of adhesion molecule and chemoattractant expression in HAoEC. Experimental assessments of selected inflammation markers were performed to validate these predictions and the results confirmed a dual role of EGFR in these cells: its activation initiated an anti-inflammatory response in HAoEC but a pro-inflammatory one in HCAEC. Our study highlights that, although they are both arterial EC, female HAoEC and HCAEC are distinguishable with regard to the role of EGFR and its involvement in inflammation regulation, what may be relevant for vascular maintenance but also the pathogenesis of endothelial dysfunction
    corecore