26 research outputs found

    Telomerase Activation to Reverse Immunosenescence in Elderly Patients With Acute Coronary Syndrome: Protocol for a Randomized Pilot Trial

    Get PDF
    Background: Inflammation plays a key role in the pathophysiology of coronary heart disease (CHD) and its acute manifestation, acute coronary syndrome (ACS). Aging is associated with a decline of the immune system, a process known as immunosenescence. This is characterized by an increase in highly proinflammatory T cells that are involved in CHD progression, plaque destabilization, and myocardial ischemia–reperfusion injury. Telomere dysfunction has been implicated in immunosenescence of T lymphocytes. Telomerase is the enzyme responsible for maintaining telomeres during cell divisions. It has a protective effect on cells under oxidative stress and helps regulate flow-mediated dilation in microvasculature. Objective: The TACTIC (Telomerase ACTivator to reverse Immunosenescence in Acute Coronary Syndrome) trial will investigate whether a telomerase activator, TA-65MD, can reduce the proportion of senescent T cells in patients with ACS with confirmed CHD. It will also assess the effect of TA-65MD on decreasing telomere shortening, reducing oxidative stress, and improving endothelial function. Methods: The study was designed as a single-center, randomized, double-blind, parallel-group, placebo-controlled phase II trial. Recruitment started in January 2019. A total of 90 patients, aged 65 years or older, with treated ACS who have had CHD confirmed by angiography will be enrolled. They will be randomized to one of two groups: TA-65MD oral therapy (8 mg twice daily) or placebo taken for 12 months. The primary outcome is the effect on immunosenescence determined by a decrease in the proportion of CD8+ TEMRA (T effector memory cells re-expressing CD45RA [CD45 expressing exon A]) cells at 12 months. Secondary outcomes include leukocyte telomere length, endothelial function, cardiac function as measured by echocardiography and NT-proBNP (N-terminal fragment of the prohormone brain-type natriuretic peptide), systemic inflammation, oxidative stress, and telomerase activity. Results: The study received National Health Service (NHS) ethics approval on August 9, 2018; Medicines and Healthcare products Regulatory Agency approval on October 19, 2018; and NHS Health Research Authority approval on October 22, 2018. The trial began recruiting participants in January 2019 and completed recruitment in March 2020; the trial is due to report results in 2021. Conclusions: This pilot trial in older patients with CHD will explore outcomes not previously investigated outside in vitro or preclinical models. The robust design ensures that bias has been minimized. Should the results indicate reduced frequency of immunosenescent CD8+ T cells as well as improvements in telomere length and endothelial function, we will plan a larger, multicenter trial in patients to determine if TA-65MD is beneficial in the treatment of CHD in elderly patients

    Activation of telomerase by TA-65 enhances immunity and reduces inflammation post myocardial infarction

    Get PDF
    Myocardial infarction (MI) accelerates immune ageing characterised by lymphopenia, expansion of terminally differentiated CD8+ T-lymphocytes (CD8+ TEMRA) and inflammation. Pre-clinical data showed that TA-65, an oral telomerase activator, reduced immune ageing and inflammation after MI. We conducted a double blinded randomised controlled pilot trial evaluating the use of TA-65 to reduce immune cell ageing in patients following MI. Ninety MI patients aged over 65 years were randomised to either TA-65 (16 mg daily) or placebo for 12 months. Peripheral blood leucocytes were analysed by flow cytometry. The pre-defined primary endpoint was the proportion of CD8+ T-lymphocytes which were CD8+ TEMRA after 12 months. Secondary outcomes included high-sensitivity C-reactive protein (hsCRP) levels. Median age of participants was 71 years. Proportions of CD8+ TEMRA did not differ after 12 months between treatment groups. There was a significant increase in mean total lymphocyte count in the TA-65 group after 12 months (estimated treatment effect: + 285 cells/μl (95% CI: 117–452 cells/ μ l, p < 0.004), driven by significant increases from baseline in CD3+, CD4+, and CD8+ T-lymphocytes, B-lymphocytes and natural killer cells. No increase in lymphocyte populations was seen in the placebo group. At 12 months, hsCRP was 62% lower in the TA-65 group compared to placebo (1.1 vs. 2.9 mg/L). Patients in the TA-65 arm experienced significantly fewer adverse events (130 vs. 185, p = 0.002). TA-65 did not alter CD8+ TEMRA but increased all major lymphocyte subsets and reduced hsCRP in elderly patients with MI after 12 months

    TP53 mutant MDM2-amplified cell lines selected for resistance to MDM2-p53 binding antagonists retain sensitivity to ionizing radiation

    Get PDF
    Non-genotoxic reactivation of the p53 pathway by MDM2-p53 binding antagonists is an attractive treatment strategy for wild-type TP53 cancers. To determine how resistance to MDM2/p53 binding antagonists might develop, SJSA-1 and NGP cells were exposed to growth inhibitory concentrations of chemically distinct MDM2 inhibitors, Nutlin-3 and MI-63, and clonal resistant cell lines generated. The p53 mediated responses of parental and resistant cell lines were compared. In contrast to the parental cell lines, p53 activation by Nutlin-3, MI-63 or ionizing radiation was not observed in either the SJSA-1 or the NGP derived cell lines. An identical TP53 mutation was subsequently identified in both of the SJSA-1 resistant lines, whilst one out of three identified mutations was common to both NGP derived lines. Mutation specific PCR revealed these mutations were present in parental SJSA-1 and NGP cell populations at a low frequency. Despite cross-resistance to a broad panel of MDM2/p53 binding antagonists, these MDM2-amplified and TP53 mutant cell lines remained sensitive to ionizing radiation (IR). These results indicate that MDM2/p53 binding antagonists will select for p53 mutations present in tumours at a low frequency at diagnosis, leading to resistance, but such tumours may nevertheless remain responsive to alternative therapies, including IR

    Exogenous transforming growth factor-β1 and its helminth-derived mimic attenuate the heart's inflammatory response to ischemic injury and reduce mature scar size

    Get PDF
    Coronary reperfusion after acute ST-elevation myocardial infarction (STEMI) is standard therapy to salvage ischemic heart muscle. However, subsequent inflammatory responses within the infarct lead to further loss of viable myocardium. Transforming growth factor (TGF)-β1 is a potent anti-inflammatory cytokine released in response to tissue injury. The aim of this study was to investigate the protective effects of TGF-β1 after MI. In patients with STEMI, there was a significant correlation (P = 0.003) between higher circulating TGF-β1 levels at 24 hours after MI and a reduction in infarct size after 3 months, suggesting a protective role of early increase in circulating TGF-β1. A mouse model of cardiac ischemia reperfusion was used to demonstrate multiple benefits of exogenous TGF-β1 delivered in the acute phase. It led to a significantly smaller infarct size (30% reduction, P = 0.025), reduced inflammatory infiltrate (28% reduction, P = 0.015), lower intracardiac expression of inflammatory cytokines IL-1β and chemokine (C-C motif) ligand 2 (&gt;50% reduction, P = 0.038 and 0.0004, respectively) at 24 hours, and reduced scar size at 4 weeks (21% reduction, P = 0.015) after reperfusion. Furthermore, a low-fibrogenic mimic of TGF-β1, secreted by the helminth parasite Heligmosomoides polygyrus, had an almost identical protective effect on injured mouse hearts. Finally, genetic studies indicated that this benefit was mediated by TGF-β signaling in the vascular endothelium

    Semicontact three-body interaction for nuclear density functional theory

    No full text
    To solve difficulties related to the use of nuclear density functional theory applied in its beyond-mean-field version, we introduce a semicontact three-body effective interaction. We show that this interaction is a good candidate to replace the widely used density-dependent effective interaction. The resulting new functionals are able to describe symmetric, neutron, polarized, and neutron polarized nuclear matter as well as the effective mass properties simultaneously.peerReviewe

    Nuclear density functional theory with a semi-contact 3-body interaction

    No full text
    Theories combining nuclear density functional approach (DFT) and effects beyond the independent particle/quasi-particle limit have attracted much attention recently. In particular, such theories, generically referred as "beyond mean-field" (BMF) seem unavoidable to account for both single-particle effects and complex quantum internal phenomena in nuclear finite many-body nuclear systems. It has been realized recently that BMF theories might lead to specific difficulties when applied within the nuclear DFT context. An example is the appearance of divergences in configuration mixing approaches. A short summary of the difficulties is given here. One source of problem is the use of energy functional of non-integer powers of the density. We show that such dependence can be mimicked by a suitable choice of a three-body interaction. Application on infinite nuclear matter in various spin-isospin channels will be given.peerReviewe

    Etude de l'effet des gangliosides extraits à partir de tumeurs de mélanome humain sur les cellules dendritiquese

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Nuclear density functional theory with a semi-contact 3-body interaction

    No full text
    Theories combining nuclear density functional approach (DFT) and effects beyond the independent particle/quasi-particle limit have attracted much attention recently. In particular, such theories, generically referred as “beyond mean-field” (BMF) seem unavoidable to account for both single-particle effects and complex quantum internal phenomena in nuclear finite many-body nuclear systems. It has been realized recently that BMF theories might lead to specific difficulties when applied within the nuclear DFT context. An example is the appearance of divergences in configuration mixing approaches. A short summary of the difficulties is given here. One source of problem is the use of energy functional of non-integer powers of the density. We show that such dependence can be mimicked by a suitable choice of a three-body interaction. Application on infinite nuclear matter in various spin-isospin channels will be given

    Contraintes microscopiques et au-delà du champ moyen pour une nouvelle génération de fonctionnelles de la densité nucléaires

    No full text
    Nuclear structure is subject to a major renewal linked with the development of radioactive ion beams (such as the SPIRAL 1 and 2 beams at GANIL). Mean-field and/or density-functional methods are among the best suited for studying nuclei produced at such facilities. The present work aims at demonstrating how existing functionals can be improved so as to exhibit a better predictive power in little-explored regions of the nuclear chart. We propose a better description of the isospin-dependence of the effective interaction, and examine the relevance of adding a tensor coupling. We show how a new generation of functionals can be better constrained by considering results obtained beyond the mean-field approximation. Finally, we attempt establishing a link with the bare nucleon-nucleon potential for the description of pairing, thus participating in the construction of a non-empirical functionalLa structure nucléaire connaît une véritable renaissance liée au développement des faisceaux d'ions radioactifs (tels les faisceaux SPIRAL 1 et 2 au GANIL). Les méthodes de champ moyen et/ou de fonctionnelle de la densité sont parmi les outils les plus généraux et les mieux adaptés pour étudier les noyaux qui sont produits auprès de tels instruments. Le but du travail présenté est de montrer comment les fonctionnelles existantes peuvent être améliorées afin d'avoir un meilleur pouvoir prédictif dans les régions encore peu explorées de la carte des noyaux. Il est en particulier proposé de mieux modéliser la dépendance en isospin de l'interaction effective, et l'intérêt d'y ajouter un couplage de type tensoriel est étudié. Nous mesurons également l'apport de calculs au-delà de l'approximation du champ moyen lors de la construction de la fonctionnelle. Finalement, nous tentons d'établir le lien avec l'interaction nue entre nucléons pour la description de l'appariement, participant ainsi au développement d'une fonctionnelle non-empiriqueLYON1-BU.Sciences (692662101) / SudocSudocFranceF
    corecore