1,118 research outputs found

    The Redshift Distribution of FIRST Radio Sources at 1 mJy

    Get PDF
    We present spectra for a sample of radio sources from the FIRST survey, and use them to define the form of the redshift distribution of radio sources at mJy levels.We targeted 365 sources and obtained 46 redshifts (13 per cent of the sample). We find that our sample is complete in redshift measurement to R ∌18.6\sim 18.6, corresponding to z∌0.2z\sim 0.2. Early-type galaxies represent the largest subset (45 per cent) of the sample and have redshifts 0.15\la z \la 0.5 ; late-type galaxies make up 15 per cent of the sample and have redshifts 0.05\la z \la 0.2; starbursting galaxies are a small fraction (∌6\sim 6 per cent), and are very nearby (z\la 0.05). Some 9 per cent of the population have Seyfert1/quasar-type spectra, all at z\ga 0.8, and there are 4 per cent are Seyfert2 type galaxies at intermediate redshifts (z∌0.2z\sim 0.2). Using our measurements and data from the Phoenix survey, we obtain an estimate for N(z)N(z) at S1.4GHz≄1S_{1.4 \rm {GHz}}\ge 1 mJy and compare this with model predictions. At variance with previous conclusions, we find that the population of starbursting objects makes up \la 5 per cent of the radio population at S ∌1\sim 1 mJy.Comment: 20 pages, sumbitted to MNRA

    A REVIEW AND CRITIQUE OF DSS

    Get PDF
    Information Systems Working Papers Serie

    A nonlinear quantum model of the Friedmann universe

    Full text link
    A discussion is given of the quantisation of a physical system with finite degrees of freedom subject to a Hamiltonian constraint by treating time as a constrained classical variable interacting with an unconstrained quantum state. This leads to a quantisation scheme that yields a Schrodinger-type equation which is in general nonlinear in evolution. Nevertheless it is compatible with a probabilistic interpretation of quantum mechanics and in particular the construction of a Hilbert space with a Euclidean norm is possible. The new scheme is applied to the quantisation of a Friedmann Universe with a massive scalar field whose dynamical behaviour is investigated numerically.Comment: 11 pages of text + 4 pages for 8 figure

    Deformed Clifford algebra and supersymmetric quantum mechanics on a phase space with applications in quantum optics

    Full text link
    In order to realize supersymmetric quantum mechanics methods on a four dimensional classical phase-space, the complexified Clifford algebra of this space is extended by deforming it with the Moyal star-product in composing the components of Clifford forms. Two isospectral matrix Hamiltonians having a common bosonic part but different fermionic parts depending on four real-valued phase space functions are obtained. The Hamiltonians are doubly intertwined via matrix-valued functions which are divisors of zero in the resulting Moyal-Clifford algebra. Two illustrative examples corresponding to Jaynes-Cummings-type models of quantum optics are presented as special cases of the method. Their spectra, eigen-spinors and Wigner functions as well as their constants of motion are also obtained within the autonomous framework of deformation quantization.Comment: 22 pages. published versio

    Black Holes with Weyl Charge and Non-Riemannian Waves

    Get PDF
    A simple modification to Einstein's theory of gravity in terms of a non-Riemannian connection is examined. A new tensor-variational approach yields field equations that possess a covariance similar to the gauge covariance of electromagnetism. These equations are shown to possess solutions analogous to those found in the Einstein-Maxwell system. In particular one finds gravi-electric and gravi-magnetic charges contributing to a spherically symmetric static Reissner-Nordstr\"om metric. Such Weyl ``charges'' provide a source for the non-Riemannian torsion and metric gradient fields instead of the electromagnetic field. The theory suggests that matter may be endowed with gravitational charges that couple to gravity in a manner analogous to electromagnetic couplings in an electromagnetic field. The nature of gravitational coupling to spinor matter in this theory is also investigated and a solution exhibiting a plane-symmetric gravitational metric wave coupled via non-Riemannian waves to a propagating spinor field is presented.Comment: 18 pages Plain Tex (No Figures), Classical and Quantum Gravit

    Rigorous Formulation of Duality in Gravitational Theories

    Full text link
    In this paper we evince a rigorous formulation of duality in gravitational theories where an Einstein like equation is valid, by providing the conditions under which the Hodge duals (with respect to the metric tensor g) of T^a and R_b^a may be considered as the torsion and curvature 2-forms associated with a connection D', part of a Riemann-Cartan structure (M,g',D'), in the cases g = g' and g does not equal g', once T^a and R_b^a are the torsion and curvature 2-forms associated with a connection D part of a Riemann-Cartan structure (M,g,D). A new form for the Einstein equation involving the dual of the Riemann tensor of D is also provided, and the result is compared with others appearing in the literature.Comment: 15 page

    An Einstein-Hilbert Action for Axi-Dilaton Gravity in 4-Dimensions

    Get PDF
    We examine the axi-dilatonic sector of low energy string theory and demonstrate how the gravitational interactions involving the axion and dilaton fields may be derived from a geometrical action principle involving the curvature scalar associated with a non-Riemannian connection. In this geometry the antisymmetric tensor 3-form field determines the torsion of the connection on the frame bundle while the gradient of the metric is determined by the dilaton field. By expressing the theory in terms of the Levi-Civita connection associated with the metric in the ``Einstein frame'' we confirm that the field equations derived from the non-Riemannian Einstein-Hilbert action coincide with the axi-dilaton sector of the low energy effective action derived from string theory.Comment: 6 pages Plain Tex (No Figures), Letter to Editor Classical and Quantum Gravit

    Z_2-gradings of Clifford algebras and multivector structures

    Full text link
    Let Cl(V,g) be the real Clifford algebra associated to the real vector space V, endowed with a nondegenerate metric g. In this paper, we study the class of Z_2-gradings of Cl(V,g) which are somehow compatible with the multivector structure of the Grassmann algebra over V. A complete characterization for such Z_2-gradings is obtained by classifying all the even subalgebras coming from them. An expression relating such subalgebras to the usual even part of Cl(V,g) is also obtained. Finally, we employ this framework to define spinor spaces, and to parametrize all the possible signature changes on Cl(V,g) by Z_2-gradings of this algebra.Comment: 10 pages, LaTeX; v2 accepted for publication in J. Phys.

    The VLA-COSMOS Survey: III. Further Catalog Analysis and the Radio Source Counts

    Full text link
    The VLA-COSMOS Large Project has imaged the 2 sq.deg. COSMOS field with a resolution of 1.5 arcsec and a sensitivity of about 11 microJy (1 sigma) yielding to a catalog of about 3600 radio sources. In this paper we present a further analysis of the VLA-COSMOS Large Project catalog of radio sources aimed to: 1) quantify and correct for the effect of bandwidth smearing in the catalog, 2) determine the incompleteness produced by the noise bias and the resolution bias in the new catalog and 3) derive the radio source counts at 1.4 GHz. The effect of bandwidth smearing on the radio sources in the catalog was quantified comparing the peak and total flux densities in the final mosaic and in each of the individual pointings where the source was closest to the center of the field. We find that the peak flux densities in the original VLA-COSMOS Large Project catalog have to be divided by a factor about 0.8 or 0.9, depending on the distance from the mosaic center. The completeness of the radio catalog has been tested using samples of simulated radio sources with different angular size distributions. These simulated sources have been added to the radio image and recovered using the same techniques used to produce the radio catalog. The fraction of missed sources as a function of the total flux density is a direct measure of the incompleteness. Finally, we derived the radio source counts down to 60 microJy with unprecedented good statistics. Comparison to the findings of other surveys shows good agreement in the flux density range 0.06-1 mJy confirming the upturn at about 0.5 mJy and a possible decline of the source counts below about 0.1 mJy.Comment: 23 pages, 6 figure. Accepted for publication in Astrophysical Journa
    • 

    corecore