37 research outputs found

    Evaluation of urban inland waterway traffic noise using a modified Nord 2000 prediction model

    No full text
    This study developed a prediction model for estimating urban inland waterway traffic noise emission level. The model based on the Scandinavian Nord 2000 method, which was modified by adding two categories of traffic flow, comprising light and heavy vessels, as well as vessel average speed to the calculating equations. Meanwhile, the influences of the water surface and embankment were also considered in the established model. Model verification was conducted using the data surveyed at the 30 sampling points of Danjinlicaohe Channel in Jiangsu Province of China. A high correlation was found between the predicted and measured noise values LAeq (Pearson correlation coefficient = 0.949, p \u3c 0.01). And the mean difference between the predicted and measured noise values was 0.16 ± 1.28 dBA. The results showed that the proposed model had higher accuracy than the unmodified Nord 2000 method and can be applied for predicting vessel noise exposure level on inland waterway of China

    Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells

    No full text
    A great challenge for state-of-the-art solar cells is to generate electricity in all weather. We present here the rapid conversion of carbon quantum dots (CQDs) from carbohydrates (including glucose, maltol, sucrose) for an all-weather solar cell, which comprises a CQD-sensitized mesoscopic titanium dioxide/long-persistence phosphor (<i>m</i>-TiO<sub>2</sub>/LPP) photoanode, a I<sup>–</sup>/I<sub>3</sub><sup>–</sup> redox electrolyte, and a platinum counter electrode. In virtue of the light storing and luminescent behaviors of LPP phosphors, the generated all-weather solar cells can not only convert sunlight into electricity on sunny days but persistently realize electricity output in all dark–light conditions. The maximized photoelectric conversion efficiency is as high as 15.1% for so-called all-weather CQD solar cells in dark conditions

    Hydrogen-Bonded Dopant-Free Hole Transport Material Enables Efficient and Stable Inverted Perovskite Solar Cells

    Get PDF
    Although many dopant-free hole transport materials (HTMs) for perovskite solar cells (PSCs) have been investigated in the literature, novel and useful molecular designs for high-performance HTMs are still needed. In this work, a hydrogen-bonding association system (NH⋯CO) between amide and carbonyl is introduced into the pure HTM layer. Our study demonstrates that the hydrogen-bonding association can not only significantly increase the HTM’s hole transport mobility and functionalize the surface passivation to the perovskite layer, but also form Pb–N coordination bonds at the interface to promote the hole extraction while hindering the interfacial charge recombination. As a result, the PSCs based on dopant-free hydrogen-bonded HTMs can achieve a champion power conversion efficiency (PCE) of 21.62%, which is around 32% higher than the pristine PSC without the hydrogen-bonding association. Furthermore, the dopant-free hydrogen-bonded HTMs based device shows remarkable long-term light stability, retaining 87% of its original value after 500 h continuous illumination, measured at the maximum power point. This work not only provides a potential HTM with hydrogen-bonding association in PSCs, but also demonstrates that introducing hydrogen bonding into the materials is a useful and simple strategy for developing high-performance dopant-free HTMs.publishedVersionPeer reviewe
    corecore