269 research outputs found

    Evaluating Quasi-Periodic Variations in the Îł\gamma-ray Lightcurves of Fermi-LAT Blazars

    Full text link
    The detection of periodicities in light curves of active galacticnuclei (AGN) could have profound consequences for our understanding of the nature and radiation physics of these objects. At high energies (HE; E>100 MeV) 5 blazars (PG 1553+113,PKS 2155-304, 0426-380, 0537-441, 0301-243) have been reported to show year-like quasi-periodic variations (QPVs) with significance >3 sig. As these findings are based on few cycles only, care needs to be taken to properly account for random variations which can produce intervals of seemingly periodic behaviour. We present results of an updated timing analysis for 6 blazars (adding PKS 0447-439), utilizing suitable methods to evaluate their long term variability properties and to search for QPVs in their light curves. We generate gamma-ray light curves covering almost 10 years, study their timing properties and search for QPVs using the Lomb-Scargle Periodogram and the Wavelet Z-transform. Extended Monte Carlo simulations are used to evaluate the statistical significance. Comparing their probability density functions (PDFs), all sources (except PG 1553+113) exhibit a clear deviation from a Gaussian distribution, but are consistent with being log-normal, suggesting that the underlying variability is of a non-linear, multiplicative nature. Apart from PKS 0301-243 the power spectral density for all investigated blazars is close to flicker noise (PL slope -1). Possible QPVs with a local significance ~ 3 sig. are found in all light curves (apart from PKS 0426-380 and 0537-441), with observed periods between (1.7-2.8) yr. The evidence is strongly reduced, however, if evaluated in terms of a global significance. Our results advise caution as to the significance of reported year-like HE QPVs in blazars. Somewhat surprisingly, the putative, redshift-corrected periods are all clustering around 1.6 yr. We speculate on possible implications for QPV generation.Comment: 12 pages, 13 figure

    Discovery of very high energy Îł-ray emission from the BL Lacertae object PKS 0301-243 with H.E.S.S.

    Get PDF
    The active galactic nucleus PKS 0301−243 (z = 0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV 100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 h. Gamma rays above 200 GeV are detected at a significance of 9.4σ. A hint of variability at the 2.5σ level is found. An integral flux I(E > 200 GeV) = (3.3 ± 1.1stat ± 0.7syst) × 10-12 ph cm-2 s-1 and a photon index Γ = 4.6 ± 0.7stat ± 0.2syst are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301−243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL.Fil: Abramowski, A.. Universitat Hamburg; AlemaniaFil: Acero, F.. Universite Montpellier II; FranciaFil: Aharonian, F.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Benkhali, F. Ait. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Akhperjanian, A. G.. National Academy of Sciences of the Republic of Armenia; ArmeniaFil: Medina, Maria Clementina. Provincia de Buenos Aires. GobernaciĂłn. Comision de Investigaciones CientĂ­ficas. Instituto Argentino de RadioastronomĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto Argentino de Radioastronomia; ArgentinaFil: Valerius, K.. UniversitĂ€t Erlangen NĂŒrnberg; AlemaniaFil: van Eldik, C.. UniversitĂ€t Erlangen NĂŒrnberg; AlemaniaFil: Vasileiadis, G.. Universite Montpellier II; FranciaFil: Venter, C.. North West University; SudĂĄfricaFil: Viana, A.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Vincent, P.. UniversitĂ© Paris Diderot - Paris 7; FranciaFil: Völk, H. J.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Volpe, F.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Vorster, M.. North West University; SudĂĄfricaFil: Wagner, S. J.. UniversitĂ€t Heidelberg; AlemaniaFil: Wagner, P.. Humboldt UniversitĂ€t zu Berlin; AlemaniaFil: Ward, M.. University Of Durham; Reino UnidoFil: Weidinger, M.. Ruhr-universitĂ€t Bochum; AlemaniaFil: Weitzel, Q.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: White, R.. The University of Leicester; Reino UnidoFil: Wierzcholska, A.. Uniwersytet Jagiellonski; PoloniaFil: Willmann, P.. UniversitĂ€t Erlangen NĂŒrnberg; AlemaniaFil: Wörnlein, A.. UniversitĂ€t Erlangen NĂŒrnberg; AlemaniaFil: Wouters, D.. CEA Saclay; FranciaFil: Zacharias, M.. Ruhr-universitĂ€t Bochum; AlemaniaFil: Zajczyk, A.. Universite Montpellier II; FranciaFil: Zdziarski, A. A.. Nicolaus Copernicus Astronomical Center; PoloniaFil: Zech, A.. UniversitĂ© Paris Diderot - Paris 7; FranciaFil: Zechlin, H. S.. Universitat Hamburg; Alemani

    Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86

    Get PDF
    Aim. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy Îł-ray emission. Methods. We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5–1 keV X-ray band, the 2–5 keV X-ray band, radio, and Îł-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results. We present the first conclusive evidence that the TeV Îł-ray emission region is shell-like based on our morphological studies. The comparison with 2–5 keV X-ray data reveals a correlation with the 0.4–50 TeV Îł-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at Ecut = (3.5 ± 1.2stat) TeV and a spectral index of Γ ≈ 1.6 ± 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to ~0.1% of the initial kinetic energy of a Type Ia supernova explosion (1051 erg). When using a hadronic model, a magnetic field of B ≈ 100 ÎŒG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E−2 spectrum for the proton distribution cannot describe the Îł-ray data. Instead, a spectral index of Γp ≈ 1.7 would be required, which implies that ∌7 × 1049/ncm⁻³ has been transferred into high-energy protons with the effective density ncm⁻³ = n/1 cm⁻³. This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm⁻³.A. Abramowski ... R. Blackwell ... P. deWilt ... J. Hawkes ... J. Lau ... G. Rowell ... F. Voisin ... et al. (H.E.S.S. Collaboration

    Probing the gamma-ray emission from HESS J1834-087 using H.E.S.S. and Fermi LAT observations

    Get PDF
    Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E> 100 GeV) Îł-ray source, HESS J1834−087, coincident with the supernova remnant (SNR) W41. The origin of the Îł-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. The Îł-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the Îł-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (σTeV = 0.17° ± 0.01°), both centered on SNR W41 and exhibiting spectra described by a power law with index ΓTeV ≃ 2.6. The GeV source detected with Fermi LAT is extended (σGeV = 0.15° ± 0.03°) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index ΓGeV = 2.15 ± 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the Îł-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to Îł-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected following a Maxwellian distribution by a pulsar with a high spin-down power (>1037 erg s-1). This additional low-energy component is not needed if we consider that the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the Îł-ray sources, the detection of OH (1720 MHz) maser lines, and the hadronic modeling.H.E.S.S. Collaboration: A. Abramowski ... P. deWilt ... N. Maxted ... G. Rowell ... et al

    The H.E.S.S. Galactic plane survey

    Get PDF
    We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) Îł-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE Îł-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≀ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (â‰Č1.5% Crab flux for point-like sources), and energy range (0.2–100 TeV). We constructed a catalog of VHE Îł-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible associations with cataloged objects, notably PWNe and energetic pulsars that could power VHE PWNe.H.E.S.S. Collaboration: H. Abdalla 
 R. Blackwell 
 P. DeWilt 
 J. Hawkes 
 J. Lau 
 N. Maxted 
 G. Rowell 
 F. Voisin 
 et al

    Long-term monitoring of PKS 2155-304 with ATOM and H.E.S.S.: investigation of optical/gamma-ray correlations in different spectral states

    Get PDF
    In this paper we report on the analysis of all the available optical and very high-energy γ-ray (>200 GeV) data for the BL Lac object PKS 2155−304, collected simultaneously with the ATOM and H.E.S.S. telescopes from 2007 until 2009. This study also includes X-ray (RXTE, Swift) and high-energy γ-ray (Fermi-LAT) data. During the period analysed, the source was transitioning from its flaring to quiescent optical states, and was characterized by only moderate flux changes at different wavelengths on the timescales of days and months. A flattening of the optical continuum with an increasing optical flux can be noted in the collected dataset, but only occasionally and only at higher flux levels. We did not find any universal relation between the very high-energy γ-ray and optical flux changes on the timescales from days and weeks up to several years. On the other hand, we noted that at higher flux levels the source can follow two distinct tracks in the optical flux–colour diagrams, which seem to be related to distinct γ-ray states of the blazar. The obtained results therefore indicate a complex scaling between the optical and γ-ray emission of PKS 2155−304, with different correlation patterns holding at different epochs, and a γ-ray flux depending on the combination of an optical flux and colour rather than a flux alone.H.E.S.S. Collaboration ... P. deWilt ... N. Maxted ... G. Rowell ... et al

    Gamma-ray blazar spectra with H.E.S.S. II mono analysis: the case of PKS 2155-304 and PG 1553+113

    Get PDF
    Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment’s sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument’s energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≄0.5. The high-frequency peaked BL Lac objects PKS 2155−304 (z = 0.116) and PG 1553+113 (0.43 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155−304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Methods. Multiple observational campaigns of PKS 2155−304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1–5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155−304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155−304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0σ statistical preference for non-zero curvature for PKS 2155−304 and 4.5σ for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E ≈ 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155−304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.H. Abdalla, A. Abramowski, F. Aharonian, F. Ait Benkhali, A. G. Akhperjanian 
 Gavin P Rowell 
 et al. (H.E.S.S. Collaboration

    Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S.

    Get PDF
    Published 8 September 2016The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using Îł-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant Îł-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟚σv⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟚σv⟩ values of 6×10^{-26}  cm^{3} s^{-1} in the W^{+}W^{-} channel for a DM particle mass of 1.5 TeV, and 2×10^{-26}  cm^{3} s^{-1} in the τ^{+}τ^{-} channel for a 1 TeV mass. For the first time, ground-based Îł-ray observations have reached sufficient sensitivity to probe ⟚σv⟩ values expected from the thermal relic density for TeV DM particles.H. Abdallah ... R. Blackwell ... P. deWilt ... J. Hawkes ... J. Lau ... N. Maxted ... G. Rowell ... F. Voisin ... et al. (H.E.S.S. Collaboration

    Search for dark matter annihilation signals in the H.E.S.S. Inner galaxy survey

    Get PDF
    The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented Îł-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy Survey, at very high energies (≳100  GeV) performed with the H.E.S.S. array of five ground-based Cherenkov telescopes. No significant Îł-ray excess is found in the search region of the 2014-2020 dataset and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section ⟚σv⟩. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints reach ⟚σv⟩ values of 3.7×10^{-26}  cm^{3} s^{-1} for 1.5 TeV DM mass in the W^{+}W^{-} annihilation channel, and 1.2×10^{-26}  cm^{3} s^{-1} for 0.7 TeV DM mass in the τ^{+}τ^{-} annihilation channel. With the H.E.S.S. Inner Galaxy Survey, ground-based Îł-ray observations thus probe ⟚σv⟩ values expected from thermal-relic annihilating TeV DM particles
    • 

    corecore