28 research outputs found

    Altered Expression of Adenovirus 12 DNA-Binding Protein but Not DNA Polymerase during Abortive Infection of Hamster Cells

    Get PDF
    Replication of human adenovirus type 12 DNA is blocked in abortively infected baby hamster kidney cells. The activity and accumulation of adenovirus 12 DNA polymerase is equivalent in infected hamster and human cell extracts. However, the accumulation of adenovirus type 12 DNA-binding protein is approximately 120-fold lower in extracts from infected hamster cells when compared to infected permissive human cells. This difference in accumulation is not because of replication of viral DNA during productive infection, since this difference is observed in the presence of hydroxyurea. The DNA-binding protein from infected hamster cells retains the ability to bind denatured DNA-cellulose. An adenovirus 5 early region 1 transformed hamster cell line competent to complement the adenovirus 12 DNA replication defect also stimulates accumulation of the DNA-binding protein even when the cells are treated with hydroxyurea. Thus, the reduced expression of the viral DNA-binding protein may play a role in the mechanism of abortive infection of hamster cells by adenovirus 12

    Dengue virus neutralizing antibody levels associated with protection from infection in Thai cluster studies

    Get PDF
    BACKGROUND: Long-term homologous and temporary heterologous protection from dengue virus (DENV) infection may be mediated by neutralizing antibodies. However, neutralizing antibody titers (NTs) have not been clearly associated with protection from infection. METHODOLOGY/PRINCIPAL FINDINGS: Data from two geographic cluster studies conducted in Kamphaeng Phet, Thailand were used for this analysis. In the first study (2004-2007), cluster investigations of 100-meter radius were triggered by DENV-infected index cases from a concurrent prospective cohort. Subjects between 6 months and 15 years old were evaluated for DENV infection at days 0 and 15 by DENV PCR and IgM ELISA. In the second study (2009-2012), clusters of 200-meter radius were triggered by DENV-infected index cases admitted to the provincial hospital. Subjects of any age 6 months and older were evaluated for DENV infection at days 0 and 14. In both studies, subjects who were DENV PCR positive at day 14/15 were considered to have been susceptible on day 0. Comparison subjects from houses in which someone had documented DENV infection, but the subject remained DENV negative at days 0 and 14/15, were considered non-susceptible. Day 0 samples were presumed to be from just before virus exposure, and underwent plaque reduction neutralization testing (PRNT). Seventeen susceptible (six DENV-1, five DENV-2, and six DENV-4), and 32 non-susceptible (13 exposed to DENV-1, 10 DENV-2, and 9 DENV-4) subjects were evaluated. Comparing subjects exposed to the same serotype, receiver operating characteristic (ROC) curves identified homotypic PRNT titers of 11, 323 and 16 for DENV-1, -2 and -4, respectively, to differentiate susceptible from non-susceptible subjects. CONCLUSIONS/SIGNIFICANCE: PRNT titers were associated with protection from infection by DENV-1, -2 and -4. Protective NTs appeared to be serotype-dependent and may be higher for DENV-2 than other serotypes. These findings are relevant for both dengue epidemiology studies and vaccine development efforts

    Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand.

    No full text
    Using two polymorphic genetic markers, the merozoite surface protein-3alpha (MSP-3alpha) and the circumsporozoite protein (CSP), we investigated the population diversity of Plasmodium vivax in Mae Sod, Thailand from April 2000 through June 2001. Genotyping the parasites isolated from 90 malaria patients attending two local clinics for the dimorphic CSP gene revealed that the majority of the parasites (77%) were the VK210 type. Genotyping the MSP3-alpha gene indicated that P. vivax populations exhibited an equally high level of polymorphism as those from Papua New Guinea, a hyperendemic region. Based on the length of polymerase chain reaction products, three major types of the MSP-3alpha locus were distinguished, with frequencies of 74.8%, 18.7%, and 6.5%, respectively. The 13 alleles distinguished by restriction fragment length polymorphism analysis did not show a significant seasonal variation in frequency. Genotyping the MSP-3alpha and CSP genes showed that 19.3% and 25.6% of the patients had multiple infections, respectively, and the combined rate was 35.6%. Comparisons of MSP-3alpha sequences from nine clones further confirmed the high level of genetic diversity of the parasite and also suggested that geographic isolation may exist. These results strongly indicate that P. vivax populations are highly diverse and multiple clonal infections are common in this malaria-hypoendemic region of Thailand

    Adeno-Associated Virus Type 2-Mediated Gene Transfer: Correlation of Tyrosine Phosphorylation of the Cellular Single-Stranded D Sequence-Binding Protein with Transgene Expression in Human Cells In Vitro and Murine Tissues In Vivo

    No full text
    Although the adeno-associated virus type 2 (AAV)-based vector system has gained attention as a potentially useful alternative to the more commonly used retroviral and adenoviral vectors for human gene therapy, the single-stranded nature of the viral genome, and consequently the rate-limiting second-strand viral DNA synthesis, significantly affect its transduction efficiency. We have identified a cellular tyrosine phosphoprotein, designated the single-stranded D sequence-binding protein (ssD-BP), which interacts specifically with the D sequence at the 3′ end of the AAV genome and may prevent viral second-strand DNA synthesis in HeLa cells (K. Y. Qing et al., Proc. Natl. Acad. Sci. USA 94:10879–10884, 1997). In the present studies, we examined whether the phosphorylation state of the ssD-BP correlates with the ability of AAV to transduce various established and primary cells in vitro and murine tissues in vivo. The efficiencies of transduction of established human cells by a recombinant AAV vector containing the β-galactosidase reporter gene were 293 > KB > HeLa, which did not correlate with the levels of AAV infectivity. However, the amounts of dephosphorylated ssD-BP which interacted with the minus-strand D probe were also as follows: 293 > KB > HeLa. Predominantly the phosphorylated form of the ssD-BP was detected in cells of the K562 line, a human erythroleukemia cell line, and in CD34(+) primary human hematopoietic progenitor cells; consequently, the efficiencies of AAV-mediated transgene expression were significantly lower in these cells. Murine Sca-1(+) lin(−) primary hematopoietic stem/progenitor cells contained predominantly the dephosphorylated form of the ssD-BP, and these cells could be efficiently transduced by AAV vectors. Dephosphorylation of the ssD-BP also correlated with expression of the adenovirus E4orf6 protein, known to induce AAV gene expression. A deletion mutation in the E4orf6 gene resulted in a failure to catalyze dephosphorylation of the ssD-BP. Extracts prepared from mouse brain, heart, liver, lung, and skeletal-muscle tissues, all of which are known to be highly permissive for AAV-mediated transgene expression, contained predominantly the dephosphorylated form of the ssD-BP. Thus, the efficiency of transduction by AAV vectors correlates well with the extent of the dephosphorylation state of the ssD-BP in vitro as well as in vivo. These data suggest that further studies on the cellular gene that encodes the ssD-BP may promote the successful use of AAV vectors in human gene therapy
    corecore