17 research outputs found

    The protein tyrosine kinase Tec regulates a CD44highCD62L- Th17 subset

    Get PDF
    The generation of Th17 cells has to be tightly controlled during an immune response. In this study, we report an increase in a CD44 2 effector/memory Th17 populations

    In vivo imaging of inflammation- and tumor-induced lymph node lymphangiogenesis by immuno-positron emission tomography.

    No full text
    Metastasis to regional lymph nodes (LN) is a prognostic indicator for cancer progression. There is a great demand for sensitive and noninvasive methods to detect metastasis to LNs. Whereas conventional in vivo imaging approaches have focused on the detection of cancer cells, lymphangiogenesis within tumor-draining LNs might be the earliest sign of metastasis. In mouse models of LN lymphangiogenesis, we found that systemically injected antibodies to lymphatic epitopes accumulated in the lymphatic vasculature in tissues and LNs. Using a (124)I-labeled antibody against the lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), we imaged, for the first time, inflammation- and tumor-draining LNs with expanded lymphatic networks in vivo by positron emission tomography (PET). Anti-LYVE-1 immuno-PET enabled visualization of lymphatic vessel expansion in LNs bearing metastases that were not detected by [(18)F]fluorodeoxyglucose-PET, which is clinically applied to detect cancer metastases. Immuno-PET with lymphatic-specific antibodies may open up new avenues for the early detection of metastasis, and the images obtained might be used as biomarkers for the progression of diseases associated with lymphangiogenesis

    In vivo

    No full text
    Metastasis to regional lymph nodes is a prognostic indicator for cancer progression. There is a great demand for sensitive and non-invasive methods to detect metastasis to the lymph nodes. While conventional in vivo imaging approaches have focused on the detection of cancer cells, lymphangiogenesis within tumor draining lymph nodes might be the earliest sign of metastasis. In mouse models of lymph node lymphangiogenesis, we found that systemically injected antibodies to lymphatic epitopes accumulated in the lymphatic vasculature in tissues and lymph nodes. Using a (124)I-labeled antibody against the lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), we imaged, for the first time, inflammation-and tumor-draining lymph nodes with expanded lymphatic networks in vivo by positron emission tomography (PET). Anti-LYVE-1 immuno-PET enabled visualization of lymphatic vessel expansion in lymph nodes bearing metastases that were not detected by (18)F-fluorodeoxyglucose-PET, which is clinically applied to detect cancer metastases. Immuno-PET with lymphatic specific antibodies may open up new avenues for the early detection of metastasis and the images obtained might be used as biomarkers for the progression of diseases associated with lymphangiogenesis

    Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation

    No full text
    Dendritic cell (DC) migration via lymphatic vessels to draining lymph nodes (dLNs) is crucial for the initiation of adaptive immunity. We imaged this process by intravital microscopy (IVM) in the ear skin of transgenic mice bearing red-fluorescent vasculature and yellow-fluorescent DCs. DCs within lymphatic capillaries were rarely transported by flow, but actively migrated within lymphatics and were significantly faster than in the interstitium. Pharmacologic blockade of the Rho-associated protein kinase (ROCK), which mediates nuclear contraction and de-adhesion from integrin ligands, significantly reduced DC migration from skin to dLNs in steady-state. IVM revealed that ROCK blockade strongly reduced the velocity of interstitial DC migration, but only marginally affected intralymphatic DC migration. By contrast, during tissue inflammation, ROCK blockade profoundly decreased both interstitial and intralymphatic DC migration. Inhibition of intralymphatic migration was paralleled by a strong upregulation of ICAM-1 in lymphatic endothelium, suggesting that during inflammation ROCK mediates de-adhesion of DC-expressed integrins from lymphatic-expressed ICAM-1. Flow chamber assays confirmed an involvement of lymphatic-expressed ICAM-1 and DC-expressed ROCK in DC crawling on lymphatic endothelium. Overall, our findings further define the role of ROCK in DC migration to dLNs and reveal a differential requirement for ROCK in intralymphatic DC crawling during steady-state and inflammation

    VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes

    No full text
    Lymphangiogenesis is involved in tumor cell metastasis and plays a major role in chronic inflammatory disorders. To investigate the role of lymphangiogenesis in inflammation, we induced and maintained delayed-type hypersensitivity (DTH) reactions in the ears of mice and then analyzed the resulting lymphangiogenesis in the inflamed tissue and draining lymph nodes (LNs) by quantitative fluorescence-activated cell sorting (FACS) and by immunofluorescence. Long-lasting inflammation induced a significant increase in the number of lymphatic endothelial cells, not only in the inflamed ears but also in the ear-draining auricular LNs. Inflammation-induced lymphangiogenesis was potently blocked by systemic administration of a vascular endothelial growth factor (VEGF)-A neutralizing antibody. Surprisingly, tissue inflammation specifically induced LN lymphangiogenesis but not LN angiogenesis. These findings were explained by analysis of both VEGF-A protein and mRNA levels, which revealed that VEGF-A was expressed at high mRNA and protein levels in inflamed ears but that expression was increased only at the protein level in activated LNs. Inflammation-induced lymphangiogenesis in LNs was independent of the presence of nodal B lymphocytes, as shown in B cell-deficient mice. Our data reveal that chronic inflammation actively induces lymphangiogenesis in LNs, which is controlled remotely, by lymphangiogenic factors produced at the site of inflammation
    corecore