21 research outputs found

    Molecular and phenotypic diversity of <I>CBL</I>-mutated juvenile myelomonocytic leukemia

    Get PDF
    Mutations in the CBL gene were first identified in adults with various myeloid malignancies. Some patients with juvenile myelomonocytic leukemia (JMML) were also noted to harbor mutations in CBL, but were found to have generally less aggressive disease courses compared to patients with other forms of Ras pathway-mutant JMML. Importantly, and in contrast to most reports in adults, the majority of CBL mutations in JMML patients are germline with acquired uniparental disomy occurring in affected marrow cells. Here, we systematically studied a large cohort of 33 JMML patients with CBL mutations and found that this disease is highly diverse in presentation and overall outcome. Moreover, we discovered somatically acquired CBL mutations in 15% of pediatric patients who presented with more aggressive disease. Neither clinical features nor methylation profiling were able to distinguish patients with somatic CBL mutations from those with germline CBL mutations, highlighting the need for germline testing. Overall, we demonstrate that disease courses are quite heterogeneous even among patients with germline CBL mutations. Prospective clinical trials are warranted to find ideal treatment strategies for this diverse cohort of patients

    Two Unique Cases of X-linked SCID: A Diagnostic Challenge in the Era of Newborn Screening

    Get PDF
    In the era of newborn screening (NBS) for severe combined immunodeficiency (SCID) and the possibility of gene therapy (GT), it is important to link SCID phenotype to the underlying genetic disease. In western countries, X-linked interleukin 2 receptor gamma chain (IL2RG) and adenosine deaminase (ADA) deficiency SCID are two of the most common types of SCID and can be treated by GT. As a challenge, both IL2RG and ADA genes are highly polymorphic and a gene–based diagnosis may be difficult if the variant is of unknown significance or if it is located in non-coding areas of the genes that are not routinely evaluated with exon-based genetic testing (e.g., introns, promoters, and the 5′and 3′ untranslated regions). Therefore, it is important to extend evaluation to non-coding areas of a SCID gene if the exon-based sequencing is inconclusive and there is strong suspicion that a variant in that gene is the cause for disease. Functional studies are often required in these cases to confirm a pathogenic variant. We present here two unique examples of X-linked SCID with variable immune phenotypes, where IL2R gamma chain expression was detected and no pathogenic variant was identified on initial genetic testing. Pathogenic IL2RG variants were subsequently confirmed by functional assay of gamma chain signaling and maternal X-inactivation studies. We propose that such tests can facilitate confirmation of suspected cases of X-linked SCID in newborns when initial genetic testing is inconclusive. Early identification of pathogenic IL2RG variants is especially important to ensure eligibility for gene therapy

    Noncompliance in cardiovascular clinical trials

    No full text
    This article reviews the current literature on attempts to improve compliance and the effect of NC on clinical trials, with a focus on cardiovascular trials (and antiplatelet therapy in particular). Compliance is a major concern for physicians and researchers not only because of its overwhelming financial impact on health care and its potential to undermine clinical outcomes, but also because it poses critical questions about the validity of results from clinical trials. Understanding the implications of NC in practice and research will serve to improve future clinical trial design to accommodate the confounding aspects associated with NC

    Diagnostic Assay to Assist Clinical Decisions for Unclassified Severe Combined Immune Deficiency

    No full text
    3D organoid T-cell differentiation from a few hundred peripheral blood CD34+ cells was successfully achieved. 3D organoid T-cell differentiation could help physicians distinguish intrinsic from extrinsic defects underlying a clinical SCID phenotype

    A diagnostic classifier for pediatric chronic graft-versus-host disease: results of the ABLE/PBMTC 1202 study

    No full text
    The National Institutes of Health Consensus criteria for chronic graft-versus-host disease (cGVHD) diagnosis can be challenging to apply in children, making pediatric cGVHD diagnosis difficult. We aimed to identify diagnostic pediatric cGVHD biomarkers that would complement the current clinical criteria and help differentiate cGVHD from non-cGVHD. The Applied Biomarkers of Late Effects of Childhood Cancer (ABLE) study, open at 27 transplant centers, prospectively evaluated 302 pediatric patients after hematopoietic cell transplant (234 evaluable). Forty-four patients developed cGVHD. Mixed and fixed effect regression analyses were performed on diagnostic cGVHD onset blood samples for cellular and plasma biomarkers, with individual markers declared relevant if they met 3 criteria: an effect ratio ≥1.3 or ≤0.75; an area under the curve (AUC) of ≥0.60; and a P value \u3c5.814 × 10-4 (Bonferroni correction) (mixed effect) or \u3c.05 (fixed effect). To address the complexity of cGVHD diagnosis in children, we built a machine learning-based classifier that combined multiple cellular and plasma biomarkers with clinical factors. Decreases in regulatory natural killer cells, naïve CD4 T helper cells, and naïve regulatory T cells, and elevated levels of CXCL9, CXCL10, CXCL11, ST2, ICAM-1, and soluble CD13 (sCD13) characterize the onset of cGVHD. Evaluation of the time dependence revealed that sCD13, ST2, and ICAM-1 levels varied with the timing of cGVHD onset. The cGVHD diagnostic classifier achieved an AUC of 0.89, with a positive predictive value of 82% and a negative predictive value of 80% for diagnosing cGVHD. Our polyomic approach to building a diagnostic classifier could help improve the diagnosis of cGVHD in children but requires validation in future prospective studies. This trial was registered at www.clinicaltrials.gov as #NCT02067832
    corecore