58 research outputs found

    Product Group S-Confinement in SUSY Gauge Theories

    Full text link
    We propose a new set of s-confining theories with product gauge groups and no tree-level superpotential, based on a model with one antisymmetric matter field and four flavors of quarks. For each product group we find a set of gauge-invariant operators which satisfy the 't Hooft anomaly matching conditions, and we identify the dynamically generated superpotential which reproduces the classical constraints between operators. Several of these product gauge theories confine without breaking chiral symmetry, even in cases where the classical moduli space is quantum-modified. These results may be useful for composite model building, particularly in cases where small meson operators are absent, or for theories with multiple natural energy scales, and may provide new ways to break supersymmetry dynamically.Comment: 28 pages, 8 tables, one appendi

    A High Quality Composite Axion

    Full text link
    The strong CP problem is a compelling motivation for physics beyond the Standard Model. The most popular solutions invoke a global Peccei-Quinn symmetry, but are challenged by quantum gravitational corrections which are thought to be incompatible with global symmetries, arguing that realistic theories contain additional structure. We explore a construction in which the Peccei-Quinn symmetry is protected to arbitrary order by virtue of a supersymmetric, confining SU(N)L×SU(N)×SU(N)R×U(1)XSU(N)_L \times SU(N) \times SU(N)_R \times U(1)_X product gauge group, achieving θˉ<10−11\bar\theta < 10^{-11} for an SU(5)SU(5) model with fa≲3×1011f_a \lesssim 3 \times 10^{11} GeV. This construction leads to low energy predictions such as a U(1)XU(1)_X gauge symmetry, and for X=B−LX = B-L engineers a naturally order ~TeV value for the μ\mu parameter of the MSSM.Comment: 17 pages, 2 figures, 3 table

    Kaluza-Klein gluons at 100 TeV: NLO corrections

    Full text link
    We explore the reach of a 100 TeV proton collider to discover KK gluons in a warped extra dimension. These particles are templates for color adjoint vectors that couple dominantly to the top quark. We examine their production rate at NLO in the six-flavor m-ACOT scheme for a variety of reference models defining their coupling to quarks, largely inspired by the RS model of a warped extra dimension. In agreement with previous calculations aimed at lower energy machines, we find that the NLO corrections are typically negative, resulting in a KK-factor of around 0.7 (depending on the model) and with a residual scale dependence on the order of ±20%\pm 20\%, greater than the variation from the scale exhibited by the na\"{i}ve LO estimate.Comment: 33 pages, 5 figures, 2 table

    The Flavor of Cosmology

    Full text link
    We discuss the cosmology of models in which the standard model Yukawa couplings depend on scalar field(s), often referred to as flavons. We find that thermal corrections of the flavon potential tend to decrease the Yukawa couplings, providing an important input to model-building. Working in the specific framework of Froggatt-Nielsen models, we compute the abundance of flavons in the early universe generated both via freeze-in and from coherent oscillations induced by thermal corrections to their potential, and discuss constraints on flavon models from cosmology. We find that cosmology places important constraints on theories containing flavons even for regions of parameter space inaccessible to collider searches.Comment: 26 pages, 5 figures, 5 appendice

    Neutralizing Topological Obstructions to Bubbles of Nothing

    Full text link
    Theories with compact extra dimensions can exhibit a vacuum instability known as a bubble of nothing. These decay modes can be obstructed if the internal manifold is stabilized by fluxes, or if it carries Wilson lines for background gauge fields, or if the instanton is incompatible with the spin structure. In each of these cases the decay can proceed by adding dynamical charged membranes or gauge fields. We give a general, bottom-up procedure for constructing approximate bubble of nothing solutions in models with internal spheres stabilized by flux and study the influence of the brane tension on the tunneling exponent, finding two branches of solutions that merge at a minimal superextremal value of the tension. In the case of Wilson operators and incompatible fermions, the relevant bubble is shown to be the Euclidean Reissner-Nordstrom black hole, and the ordinary decay exponent is modified by 1/g21/g^2 effects. We examine the Dirac operator on this background and comment on the relevance for models of supergravity with gauged RR-symmetry.Comment: 29 pages, 9 figure

    The Molecular Migdal Effect

    Full text link
    Nuclear scattering events with large momentum transfer in atomic, molecular, or solid-state systems may result in electronic excitations. In the context of atomic scattering by dark matter (DM), this is known as the Migdal effect, but the same effect has also been studied in molecules in the chemistry and neutron scattering literature. Here we present two distinct Migdal-like effects from DM scattering in molecules, which we collectively refer to as the molecular Migdal effect: a center-of-mass recoil, equivalent to the standard Migdal treatment, and a non-adiabatic coupling resulting from corrections to the Born-Oppenheimer approximation. The molecular bonds break spherical symmetry, leading to large daily modulation in the Migdal rate from anisotropies in the matrix elements. Our treatment reduces to the standard Migdal effect in atomic systems but does not rely on the impulse approximation or any semiclassical treatments of nuclear motion, and as such may be extended to models where DM scatters through a long-range force. We demonstrate all of these features in a few simple toy models of diatomic molecules, namely H2+{\rm H}_2^+, N2_2, and CO, and find total molecular Migdal rates competitive with those in semiconductors for the same target mass. We discuss how our results may be extended to more realistic targets comprised of larger molecules which could be deployed at the kilogram scale.Comment: v1: 15+2 pages, 7 figure

    Experimental Investigation of Project Orion Crew Exploration Vehicle Aeroheating in AEDC Tunnel 9

    Get PDF
    An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Arnold Engineering Development Center Tunnel 9. The goals of this test were to measure turbulent heating augmentation levels on the heat shield and to obtain high-fidelity heating data for assessment of computational fluid dynamics methods. Laminar and turbulent predictions were generated for all wind tunnel test conditions and comparisons were performed with the data for the purpose of helping to define uncertainty margins for the computational method. Data from both the wind tunnel test and the computational study are presented herein

    A composite axion from a supersymmetric product group

    Full text link
    A global U(1)PQU(1)_\text{PQ} symmetry is protected from gravitational effects in the s-confining SU(N)kSU(N)^k product group theory with A+4Q+NQ‾A+4Q +N\overline{Q} matter. If the SU(4)SU(4) family symmetry is gauged and an appropriate tree-level superpotential is added, then the dynamically generated superpotential spontaneously breaks SU(4)×U(1)PQ→SU(3)cSU(4)\times U(1)_\text{PQ} \rightarrow SU(3)_c and produces a QCD axion. Small values of the CPCP-violating θ\theta parameter are then possible without any fine-tuning, as long as the product group is suitably large. By introducing a second copy of the s-confining SU(N)SU(N) product group also coupled to the gauged SU(4)SU(4), we find that values as small as N=7N=7 are consistent with θˉ<10−10\bar\theta<10^{-10}, even under the pessimistic assumption that the dominant contribution to the axion quality is at tree level.Comment: 16 pages, 3 figures, 4 tables, 2 appendice
    • …
    corecore