23 research outputs found
West African Anopheles Gambiae Mosquitoes Harbor a Taxonomically Diverse Virome Including New Insect-Specific Flaviviruses, Mononegaviruses, and Totiviruses
Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission
Recommended from our members
Diversity, composition, altitude, and seasonality of high-altitude windborne migrating mosquitoes in the Sahel: Implications for disease transmission
Recent studies have reported Anopheles mosquitoes captured at high-altitude (40â290 m above ground) in the Sahel. Here, we describe this migration modality across genera and species of African Culicidae and examine its implications for disease transmission and control. As well as Anopheles, six other generaâCulex, Aedes, Mansonia, Mimomyia, Lutzia, and Eretmapodites comprised 90% of the 2,340 mosquitoes captured at altitude. Of the 50 molecularly confirmed species (N = 2,107), 33 species represented by multiple specimens were conservatively considered high-altitude windborne migrants, suggesting it is a common migration modality in mosquitoes (31â47% of the known species in Mali), and especially in Culex (45â59%). Overall species abundance varied between 2 and 710 specimens/species (in Ae. vittatus and Cx. perexiguus, respectively). At altitude, females outnumbered males 6:1, and 93% of the females have taken at least one blood meal on a vertebrate host prior to their departure. Most taxa were more common at higher sampling altitudes, indicating that total abundance and diversity are underestimated. High-altitude flight activity was concentrated between June and November coinciding with availability of surface waters and peak disease transmission by mosquitoes. These hallmarks of windborne mosquito migration bolster their role as carriers of mosquito-borne pathogens (MBPs). Screening 921 mosquitoes using pan-Plasmodium assays revealed that thoracic infection rate in these high-altitude migrants was 2.4%, providing a proof of concept that vertebrate pathogens are transported by windborne mosquitoes at altitude. Fourteen of the 33 windborne mosquito species had been reported as vectors to 25 MBPs in West Africa, which represent 32% of the MBPs known in that region and include those that inflict the heaviest burden on human and animal health, such as malaria, yellow fever, dengue, and Rift Valley fever. We highlight five arboviruses that are most likely affected by windborne mosquitoes in West Africa: Rift Valley fever, O'nyong'nyong, Ngari, Pangola, and Ndumu. We conclude that the study of windborne spread of diseases by migrating insects and the development of surveillance to map the sources, routes, and destinations of vectors and pathogens is key to understand, predict, and mitigate existing and new threats of public health
Recommended from our members
Diversity, dynamics, direction, and magnitude of high-altitude migrating insects in the Sahel
Long-distance migration of insects impacts food security, public health, and conservationâissues that are especially significant in Africa. Windborne migration is a key strategy enabling exploitation of ephemeral havens such as the Sahel, however, its knowledge remains sparse. In this first cross-season investigation (3 years) of the aerial fauna over Africa, we sampled insects flying 40â290 m above ground in Mali, using nets mounted on tethered helium-filled balloons. Nearly half a million insects were caught, representing at least 100 families from thirteen orders. Control nets confirmed that the insects were captured at altitude. Thirteen ecologically and phylogenetically diverse species were studied in detail. Migration of all species peaked during the wet season every year across localities, suggesting regular migrations. Species differed in flight altitude, seasonality, and associated weather conditions. All taxa exhibited frequent flights on southerly winds, accounting for the recolonization of the Sahel from southern source populations. âReturnâ southward movement occurred in most taxa. Estimates of the seasonal number of migrants per species crossing Mali at latitude 14°N were in the trillions, and the nightly distances traversed reached hundreds of kilometers. The magnitude and diversity of windborne insect migration highlight its importance and impacts on Sahelian and neighboring ecosystems
Windborne long-distance migration of malaria mosquitoes in the Sahel
Over the past two decades efforts to control malaria have halved the number of cases globally, yet burdens remain high in much of Africa and the elimination of malaria has not been achieved even in areas where extreme reductions have been sustained, such as South Africa1,2. Studies seeking to understand the paradoxical persistence of malaria in areas in which surface water is absent for 3â8 months of the year have suggested that some species of Anopheles mosquito use long-distance migration3. Here we confirm this hypothesis through aerial sampling of mosquitoes at 40â290 m above ground level and provideâto our knowledgeâthe first evidence of windborne migration of African malaria vectors, and consequently of the pathogens that they transmit. Ten species, including the primary malaria vector Anopheles coluzzii, were identified among 235 anopheline mosquitoes that were captured during 617 nocturnal aerial collections in the Sahel of Mali. Notably, females accounted for more than 80% of all of the mosquitoes that we collected. Of these, 90% had taken a blood meal before their migration, which implies that pathogens are probably transported over long distances by migrating females. The likelihood of capturing Anopheles species increased with altitude (the height of the sampling panel above ground level) and during the wet seasons, but variation between years and localities was minimal. Simulated trajectories of mosquito flights indicated that there would be mean nightly displacements of up to 300 km for 9-h flight durations. Annually, the estimated numbers of mosquitoes at altitude that cross a 100-km line perpendicular to the prevailing wind direction included 81,000 Anopheles gambiae sensu stricto, 6 million A. coluzzii and 44 million Anopheles squamosus. These results provide compelling evidence that millions of malaria vectors that have previously fed on blood frequently migrate over hundreds of kilometres, and thus almost certainly spread malaria over these distances. The successful elimination of malaria may therefore depend on whether the sources of migrant vectors can be identified and controlled
NIRS Mosquito Aging Dataset and Scripts
<p>The datasets zip contains the spreadsheets with the spectral data for each of the 6 sample groups and the three test sets.</p>
<p>The R and Matlab scripts zip contains the code necessary to replicate the analysis.</p
Vaccination with the variable tick protein of the relapsing fever spirochete Borrelia hermsii protects mice from infection by tick-bite
Abstract Background Tick-borne relapsing fevers of humans are caused by spirochetes that must adapt to both warm-blooded vertebrates and cold-blooded ticks. In western North America, most human cases of relapsing fever are caused by Borrelia hermsii, which cycles in nature between its tick vector Ornithodoros hermsi and small mammals such as tree squirrels and chipmunks. These spirochetes alter their outer surface by switching off one of the bloodstream-associated variable major proteins (Vmps) they produce in mammals, and replacing it with the variable tick protein (Vtp) following their acquisition by ticks. Based on this reversion to Vtp in ticks, we produced experimental vaccines comprised on this protein and tested them in mice challenged by infected ticks. Methods The vtp gene from two isolates of B. hermsii that encoded antigenically distinct types of proteins were cloned, expressed, and the recombinant Vtp proteins were purified and used to vaccinate mice. Ornithodoros hermsi ticks that were infected with one of the two strains of B. hermsii from which the vtp gene originated were used to challenge mice that received one of the two Vtp vaccines or only adjuvant. Mice were then followed for infection and seroconversion. Results The Vtp vaccines produced protective immune responses in mice challenged with O. hermsi ticks infected with B. hermsii. However, polymorphism in Vtp resulted in mice being protected only from the spirochete strain that produced the same Vtp used in the vaccine; mice challenged with spirochetes producing the antigenically different Vtp than the vaccine succumbed to infection. Conclusions We demonstrate that by having knowledge of the phenotypic changes made by B. hermsii as the spirochetes are acquired by ticks from infected mammals, an effective vaccine was developed that protected mice when challenged with infected ticks. However, the Vtp vaccines only protected mice from infection when challenged with that strain producing the identical Vtp. A vaccine containing multiple Vtp types may have promise as an oral vaccine for wild mammals if applied to geographic settings such as small islands where the mammal diversity is low and the Vtp types in the B. hermsii population are defined
Analysis of near infrared spectra for age-grading of wild populations of Anopheles gambiae
Abstract Background Understanding the age-structure of mosquito populations, especially malaria vectors such as Anopheles gambiae, is important for assessing the risk of infectious mosquitoes, and how vector control interventions may impact this risk. The use of near-infrared spectroscopy (NIRS) for age-grading has been demonstrated previously on laboratory and semi-field mosquitoes, but to date has not been utilized on wild-caught mosquitoes whose age is externally validated via parity status or parasite infection stage. In this study, we developed regression and classification models using NIRS on datasets of wild An. gambiae (s.l.) reared from larvae collected from the field in Burkina Faso, and two laboratory strains. We compared the accuracy of these models for predicting the ages of wild-caught mosquitoes that had been scored for their parity status as well as for positivity for Plasmodium sporozoites. Results Regression models utilizing variable selection increased predictive accuracy over the more common full-spectrum partial least squares (PLS) approach for cross-validation of the datasets, validation, and independent test sets. Models produced from datasets that included the greatest range of mosquito samples (i.e. different sampling locations and times) had the highest predictive accuracy on independent testing sets, though overall accuracy on these samples was low. For classification, we found that intramodel accuracy ranged between 73.5â97.0% for grouping of mosquitoes into âearlyâ and âlateâ age classes, with the highest prediction accuracy found in laboratory colonized mosquitoes. However, this accuracy was decreased on test sets, with the highest classification of an independent set of wild-caught larvae reared to set ages being 69.6%. Conclusions Variation in NIRS data, likely from dietary, genetic, and other factors limits the accuracy of this technique with wild-caught mosquitoes. Alternative algorithms may help improve prediction accuracy, but care should be taken to either maximize variety in models or minimize confounders
Investigation of the seasonal microbiome of Anopheles coluzzii mosquitoes in Mali.
The poorly understood mechanisms of dry season persistence of Anopheles spp. mosquitoes through the dry season in Africa remain a critical gap in our knowledge of Plasmodium disease transmission. While it is thought that adult mosquitoes remain in a dormant state throughout this seven-month dry season, the nature of this state remains unknown and has largely not been recapitulated in laboratory settings. To elucidate possible connections of this state with microbial composition, the whole body microbiomes of adult mosquitoes in the dry and wet seasons in two locations of Mali with varying water availability were compared by sequencing the 16S ribosomal RNA gene. These locations were a village near the Niger River with year-round water sources (N'Gabakoro, "riparian"), and a typical Sahelian area with highly seasonal breeding sites (Thierola Area, "Sahelian"). The 16S bacterial data consisted of 2057 sequence variants in 426 genera across 184 families. From these data, we found several compositional differences that were seasonally and spatially linked. Counter to our initial hypothesis, there were more pronounced seasonal differences in the bacterial microbiome of riparian, rather than Sahelian areas. These seasonal shifts were primarily in Ralstonia, Sphingorhabdus, and Duganella spp. bacteria that are usually soil and water-associated, indicating these changes may be from bacteria acquired in the larval environment, rather than adulthood. In Sahelian dry season mosquitoes, there was a unique intracellular bacteria, Anaplasma, which likely was acquired through non-human blood feeding. Cytochrome B analysis of blood meals showed greater heterogeneity in host choice of An. coluzzii independent of season in the Thierola area compared to N'Gabakoro (77.5% vs. 94.6% human-origin blood meal, respectively), indicating a relaxation of anthropophily. Overall, this exploratory study provides valuable indications of spatial and seasonal differences in bacterial composition which help refine this difficult to study state
Hierarchical Multiple Testing (HMT) of differentially abundant 16s rRNA sequence variants.
<p>Log<sub>2</sub> fold changes calculated via DESeq2 greater than 1.5-fold that are significant at an adjusted <i>p</i>-value < 0.05 are presented for each location. HMT is a false discovery rate adjusting methodology that arranges tested hypotheses via their phylogeny, testing sub-hypotheses only if their parent hypothesis is significant. *, **, and *** represent significance levels of <i>p-adj <</i> 0.05, 0.01 and 0.001, respectively.</p
Stacked bar plot (top) and within-sample Shannon diversity (bottom) comparing the 19 most abundant agglomerated microbial genera between dry and wet seasons.
<p>All other taxa are grouped in the âotherâ category. Sample numbers and whether it is a pooled sample (âPâ) are marked above and below bar plots, respectively. Only the top 19 genera are shown here for clarity in display and to be able to distinguish between groups, all analyses between groups were performed with all sequence variants or taxa.</p