111 research outputs found

    The Cannabinoid-Like Compound, VSN16R, Acts on Large Conductance, Ca2+-Activated K+ Channels to Modulate Hippocampal CA1 Pyramidal Neuron Firing

    Get PDF
    Large conductance, Ca2+-activated K+ (BKCa) channels are widely expressed in the central nervous system, where they regulate action potential duration, firing frequency and consequential neurotransmitter release. Moreover, drug action on, mutations to, or changes in expression levels of BKCa can modulate neuronal hyperexcitability. Amongst other potential mechanisms of action, cannabinoid compounds have recently been reported to activate BKCa channels. Here, we examined the effects of the cannabinoid-like compound (R,Z)-3-(6-(dimethylamino)-6-oxohex-1-en-1-yl)-N-(1-hydroxypropan-2-yl) benzamide (VSN16R) at CA1 pyramidal neurons in hippocampal ex vivo brain slices using current clamp electrophysiology. We also investigated effects of the BKCa channel blockers iberiotoxin (IBTX) and the novel 7-pra-martentoxin (7-Pra-MarTx) on VSN16R action. VSN16R (100 μM) increased first and second fast after-hyperpolarization (fAHP) amplitude, decreased first and second inter spike interval (ISI) and shortened first action potential (AP) width under high frequency stimulation protocols in mouse hippocampal pyramidal neurons. IBTX (100 nM) decreased first fAHP amplitude, increased second ISI and broadened first and second AP width under high frequency stimulation protocols; IBTX also broadened first and second AP width under low frequency stimulation protocols. IBTX blocked effects of VSN16R on fAHP amplitude and ISI. 7-Pra-MarTx (100 nM) had no significant effects on fAHP amplitude and ISI but, unlike IBTX, shortened first and second AP width under high frequency stimulation protocols; 7-Pra-MarTx also shortened second AP width under low frequency stimulation protocols. However, in the presence of 7-Pra-MarTx, VSN16R retained some effects on AP waveform under high frequency stimulation protocols; moreover, VSN16R effects were revealed under low frequency stimulation protocols. These findings demonstrate that VSN16R has effects in native hippocampal neurons consistent with its causing an increase in initial firing frequency via activation of IBTX-sensitive BKCa channels. The differential pharmacological effects described suggest that VSN16R may differentially target BKCa channel subtypes

    Cannabidiol modulates phosphorylated rpS6 signalling in a zebrafish model of tuberous sclerosis complex

    Get PDF
    Tuberous sclerosis complex (TSC) is a rare disease caused by mutations in the TSC1 or TSC2 genes and is characterized by widespread tumour growth, intractable epilepsy, cognitive deficits and autistic behaviour. CBD has been reported to decrease seizures and inhibit tumour cell progression, therefore we sought to determine the influence of CBD on TSC pathology in zebrafish carrying a nonsense mutation in the tsc2 gene. CBD treatment from 6 to 7 days post-fertilization (dpf) induced significant anxiolytic actions without causing sedation. Furthermore, CBD treatment from 3 dpf had no impact on tsc2-/- larvae motility nor their survival. CBD treatment did, however, reduce the number of phosphorylated rpS6 positive cells, and their cross-sectional cell size. This suggests a CBD mediated suppression of mechanistic target of rapamycin (mTOR) activity in the tsc2-/- larval brain. Taken together, these data suggest that CBD selectively modulates levels of phosphorylated rpS6 in the brain and additionally provides an anxiolytic effect. This is pertinent given the alterations in mTOR signalling in experimental models of TSC. Additional work is necessary to identify upstream signal modulation and to further justify the use of CBD as a possible therapeutic strategy to manage TSC
    • …
    corecore