1,633 research outputs found
Magneto-electrostatic trapping of ground state OH molecules
We report the magnetic confinement of neutral, ground state hydroxyl radicals
(OH) at a density of cm and temperature of 30
mK. An adjustable electric field of sufficient magnitude to polarize the OH is
superimposed on the trap in either a quadrupole or homogenous field geometry.
The OH is confined by an overall potential established via molecular state
mixing induced by the combined electric and magnetic fields acting on the
molecule's electric dipole and magnetic dipole moments, respectively. An
effective molecular Hamiltonian including Stark and Zeeman terms has been
constructed to describe single molecule dynamics inside the trap. Monte Carlo
simulation using this Hamiltonian accurately models the observed trap dynamics
in various trap configurations. Confinement of cold polar molecules in a
magnetic trap, leaving large, adjustable electric fields for control, is an
important step towards the study of low energy dipole-dipole collisions.Comment: 4 pages, 4 figure
OH hyperfine ground state: from precision measurement to molecular qubits
We perform precision microwave spectroscopy--aided by Stark deceleration--to
reveal the low magnetic field behavior of OH in its ^2\Pi_{3/2} ro-vibronic
ground state, identifying two field-insensitive hyperfine transitions suitable
as qubits and determining a differential Lande g-factor of
1.267(5)\times10^{-3} between opposite parity components of the
\Lambda-doublet. The data are successfully modeled with an effective hyperfine
Zeeman Hamiltonian, which we use to make a tenfold improvement of the
magnetically sensitive, astrophysically important \Delta F=\pm1 satellite-line
frequencies, yielding 1720529887(10) Hz and 1612230825(15) Hz.Comment: 4+ pages, 3 figure
River inundation suggests ice-sheet runoff retention
AbstractThe Greenland ice sheet is experiencing dramatic melt that is likely to continue with rapid Arctic warming. However, the proportion of meltwater stored before reaching the global ocean remains difficult to quantify. We use NASA MODIS surface reflectance data to estimate river discharge from two West Greenland rivers – the Watson River near Kangerlussuaq and the Naujat Kuat River near Nuuk – over the summers of 2000–12. By comparison with in situ river discharge observations, ‘inundation–discharge’ relations were constructed for both rivers. MODIS-based total annual discharges agree well with total discharge estimated from in situ observations (86% of summer discharge in 2009 to 96% in 2011 at the Watson River, and 106% of total discharge in 2011 to 104% in 2012 at the Naujat Kuat River). We find, however, that a time-lapse camera, deployed at the Watson River in summer 2012, better captures the variations in observed discharge, benefiting from fewer data gaps due to clouds. The MODIS-derived estimates indicate that summer discharge has not significantly increased over the last decade, despite a strong warming trend. Also, meltwater runoff estimates derived from the regional climate model RACMO2/GR for the drainage basins are higher than our reconstructions of river discharge. These results provide indirect evidence for a considerable component of water storage within the glacio-hydrological system.</jats:p
CFHTLenS: Weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment
We present weak lensing constraints on the ellipticity of galaxy-scale matter
haloes and the galaxy-halo misalignment. Using data from the
Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), we measure the
weighted-average ratio of the aligned projected ellipticity components of
galaxy matter haloes and their embedded galaxies, , split by
galaxy type. We then compare our observations to measurements taken from the
Millennium Simulation, assuming different models of galaxy-halo misalignment.
Using the Millennium Simulation we verify that the statistical estimator used
removes contamination from cosmic shear. We also detect an additional signal in
the simulation, which we interpret as the impact of intrinsic shape-shear
alignments between the lenses and their large-scale structure environment.
These alignments are likely to have caused some of the previous observational
constraints on to be biased high. From CFHTLenS we find
for early-type galaxies, which is consistent with
current models for the galaxy-halo misalignment predicting . For late-type galaxies we measure
from CFHTLenS. This can be compared to the simulated results which yield
for misaligned late-type models.Comment: 21 pages, 3 tables, 9 figures. This replacement matches the version
accepted for publication in MNRA
Prospects for the cavity-assisted laser cooling of molecules
Cooling of molecules via free-space dissipative scattering of photons is
thought not to be practicable due to the inherently large number of Raman loss
channels available to molecules and the prohibitive expense of building
multiple repumping laser systems. The use of an optical cavity to enhance
coherent Rayleigh scattering into a decaying cavity mode has been suggested as
a potential method to mitigate Raman loss, thereby enabling the laser cooling
of molecules to ultracold temperatures. We discuss the possibility of
cavity-assisted laser cooling particles without closed transitions, identify
conditions necessary to achieve efficient cooling, and suggest solutions given
experimental constraints. Specifically, it is shown that cooperativities much
greater than unity are required for cooling without loss, and that this could
be achieved via the superradiant scattering associated with intracavity
self-localization of the molecules. Particular emphasis is given to the polar
hydroxyl radical (OH), cold samples of which are readily obtained from Stark
deceleration.Comment: 18 pages, 10 figure
An international landmine telehealth symposium between Hawaii and Thailand using an Internet2 and multi-protocol videoconferencing bridge.
An international telehealth symposium was conducted between healthcare institutions in Hawaii and Thailand using a combination of Asynchronous Transfer Mode, and Internet2 connectivity. Military and civilian experts exchanged information on the acute and rehabilitative care of landmine victims in Southeast Asia. Videoconferencing can promote civil-military cooperation in healthcare fields that have multiple international stakeholders
- …
