We perform precision microwave spectroscopy--aided by Stark deceleration--to
reveal the low magnetic field behavior of OH in its ^2\Pi_{3/2} ro-vibronic
ground state, identifying two field-insensitive hyperfine transitions suitable
as qubits and determining a differential Lande g-factor of
1.267(5)\times10^{-3} between opposite parity components of the
\Lambda-doublet. The data are successfully modeled with an effective hyperfine
Zeeman Hamiltonian, which we use to make a tenfold improvement of the
magnetically sensitive, astrophysically important \Delta F=\pm1 satellite-line
frequencies, yielding 1720529887(10) Hz and 1612230825(15) Hz.Comment: 4+ pages, 3 figure