37 research outputs found

    The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication

    Get PDF
    The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. Here, we show that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed H3K27me1 in plants depends on H3.1, TSK and DNA polymerase theta (Pol Ξ). Overall, this work reveals an H3.1-specific function during replication and the common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone mono-methyltransferases and reading the H3.1 variant

    Stereoselective 11C Labeling of a “Native” Tetrapeptide by Using Asymmetric Phase-Transfer Catalyzed Alkylation Reactions

    No full text
    The first 11C-labeled unmodified (“native”) peptide is described by alkylation of a tetrapeptide Schiff base, which was achieved by an automated five-step radiochemical reaction. In a proof-of-concept study, [11C]Phe-d-Trp-Lys-Thr was synthesized. This tetrapeptide is the essential pharmacophore of octreotide, an antagonist of somatostatin receptors. The asymmetric alkylation with chiral phase-transfer catalysts enabled direct labeling of a variety of isolated 11C-peptides in a highly stereoselective manner (94 % de) with acceptable radiochemical yields (9–10 %) and practical specific activities (15–35 GBq ”mol–1 or 405–945 mCi ”mol–1) at the end of synthesis. This novel methodology provides a powerful new radiosynthetic method to access novel, stereochemically pure carbon-11-labeled native small peptides ready for in vivo studies

    Shifting the Energy Landscape of Multicomponent Reactions Using Aziridine Aldehyde Dimers: A Mechanistic Study

    No full text
    A multicomponent reaction between an aziridine aldehyde dimer, isocyanide, and l-proline to afford a chiral piperazinone was studied to gain insight into the stereodetermining and rate-limiting steps of the reaction. The stereochemistry of the reaction was found to be determined by isocyanide addition, while the rate-limiting step was found to deviate from traditional isocyanide-based multicomponent reactions. A first-order rate dependence on aziridine aldehyde dimer and a zero-order rate dependence on all other reagents have been obtained. Computations at the MPWPW91/6-31G­(d) level supported the experimental kinetic results and provide insight into the overall mechanism and the factors contributing to stereochemical induction. These factors are similar to traditional isocyanide-based multicomponent reactions, such as the Ugi reaction. The computations revealed that selective formation of a <i>Z</i>-iminium ion plays a key role in controlling the stereoselectivity of isocyanide addition, and the carboxylate group of l-proline mediates stereofacial addition. These conclusions are expected to be applicable to a wide range of reported stereoselective Ugi reactions and provide a basis for understanding the related macrocyclization of peptides with aziridine aldehydes

    <sup>11</sup>CO bonds made easily for positron emission tomography radiopharmaceuticals

    No full text
    The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry

    Practical Radiosynthesis and Preclinical Neuroimaging of [11C]isradipine, a Calcium Channel Antagonist

    No full text
    In the interest of developing in vivo positron emission tomography (PET) probes for neuroimaging of calcium channels, we have prepared a carbon-11 isotopologue of a dihydropyridine Ca2+-channel antagonist, isradipine. Desmethyl isradipine (4-(benzo[c][1,2,5]oxadiazol-4-yl)-5-(isopropoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine -3-carboxylic acid) was reacted with [11C]CH3I in the presence of tetrabutylammonium hydroxide in DMF in an HPLC injector loop to produce the radiotracer in a good yield (6 ± 3% uncorrected radiochemical yield) and high specific activity (143 ± 90 GBq·”mol−1 at end-of-synthesis). PET imaging of normal rats revealed rapid brain uptake at baseline (0.37 ± 0.08% ID/cc (percent of injected dose per cubic centimeter) at peak, 15–60 s), which was followed by fast washout. After pretreatment with isradipine (2 mg·kg−1, i.p.), whole brain radioactivity uptake was diminished by 25%–40%. This preliminary study confirms that [11C]isradipine can be synthesized routinely for research studies and is brain penetrating. Further work on Ca2+-channel radiotracer development is planned

    Conformational Modulation of in Vitro Activity of Cyclic RGD Peptides via Aziridine Aldehyde-Driven Macrocyclization Chemistry

    No full text
    Here, we demonstrate a conjugation strategy whereby cyclic RGD-containing macrocycles are prepared using aziridine aldehydes, isocyanides, and linear peptides, followed by conjugation to a cysteamine linker. Our method involves site-selective aziridine ring-opening with the nucleophilic sulfhydryl group of cysteamine. Fluorescein was then efficiently conjugated to the primary amine of cysteamine by NHS-chemistry. This strategy may be expanded to provide easy access to a wide variety of fluorescent dyes or radiometal chelators. Modeling studies showed that aziridine aldehyde cyclization chemistry stabilized the RGD motif into the required bioactive conformation and that this cyclization chemistry modulated the geometry of macrocycles of different residue lengths. In vitro studies showed that cPRGDA and cPRGDAA both selectively bound to α<sub>V</sub>ÎČ<sub>3</sub>-overexpressing U87 glioblastoma cells, and that cPRGDA had a better binding affinity compared to cPRGDAA. The improved binding affinity of cPRGDA was attributed to the fixed Pro-C<sup>α</sup>-Asp-C<sup>α</sup> distance surrounding the stabilized RGD motif in cPRGDA
    corecore