6,870 research outputs found

    Pelphix: Surgical Phase Recognition from X-ray Images in Percutaneous Pelvic Fixation

    Full text link
    Surgical phase recognition (SPR) is a crucial element in the digital transformation of the modern operating theater. While SPR based on video sources is well-established, incorporation of interventional X-ray sequences has not yet been explored. This paper presents Pelphix, a first approach to SPR for X-ray-guided percutaneous pelvic fracture fixation, which models the procedure at four levels of granularity -- corridor, activity, view, and frame value -- simulating the pelvic fracture fixation workflow as a Markov process to provide fully annotated training data. Using added supervision from detection of bony corridors, tools, and anatomy, we learn image representations that are fed into a transformer model to regress surgical phases at the four granularity levels. Our approach demonstrates the feasibility of X-ray-based SPR, achieving an average accuracy of 93.8% on simulated sequences and 67.57% in cadaver across all granularity levels, with up to 88% accuracy for the target corridor in real data. This work constitutes the first step toward SPR for the X-ray domain, establishing an approach to categorizing phases in X-ray-guided surgery, simulating realistic image sequences to enable machine learning model development, and demonstrating that this approach is feasible for the analysis of real procedures. As X-ray-based SPR continues to mature, it will benefit procedures in orthopedic surgery, angiography, and interventional radiology by equipping intelligent surgical systems with situational awareness in the operating room

    Demographic trends among older cannabis users in the United States, 2006–13

    Get PDF
    Background and Aims: The ageing US population is providing an unprecedented population of older adults who use recreational drugs. We aimed to estimate the trends in the prevalence of past-year use of cannabis, describe the patterns and attitudes and determine correlates of cannabis use by adults age 50 years and older. Design: Secondary analysis of the National Survey on Drug Use and Health survey from 2006 to 2013, a cross-sectional survey given to a nationally representative probability sample of populations living in US households. Setting: USA. Participants: A total of 47 140 survey respondents aged ≄ 50 years. Measures: Estimates and trends of past-year use of cannabis. Findings: The prevalence of past-year cannabis use among adults aged ≄ 50 increased significantly from 2006/07 to 2012/13, with a 57.8% relative increase for adults aged 50–64 (linear trend P < 0.001) and a 250% relative increase for those aged ≄ 65 (linear trend P = 0.002). When combining data from 2006 to 2013, 6.9% of older cannabis users met criteria for cannabis abuse or dependence, and the majority of the sample reported perceiving no risk or slight risk associated with monthly cannabis use (85.3%) or weekly use (79%). Past-year users were more likely to be younger, male, non-Hispanic, not have multiple chronic conditions and use tobacco, alcohol or other drugs compared with non-past-year cannabis users. Conclusions: The prevalence of cannabis use has increased significantly in recent years among US adults aged ≄ 50 years

    New Insights into Traffic Dynamics: A Weighted Probabilistic Cellular Automaton Model

    Full text link
    From the macroscopic viewpoint for describing the acceleration behavior of drivers, this letter presents a weighted probabilistic cellular automaton model (the WP model, for short) by introducing a kind of random acceleration probabilistic distribution function. The fundamental diagrams, the spatio-temporal pattern are analyzed in detail. It is shown that the presented model leads to the results consistent with the empirical data rather well, nonlinear velocity-density relationship exists in lower density region, and a new kind of traffic phenomenon called neo-synchronized flow is resulted. Furthermore, we give the criterion for distinguishing the high-speed and low-speed neo-synchronized flows and clarify the mechanism of this kind of traffic phenomena. In addition, the result that the time evolution of distribution of headways is displayed as a normal distribution further validates the reasonability of the neo-synchronized flow. These findings suggest that the diversity and randomicity of drivers and vehicles has indeed remarkable effect on traffic dynamics.Comment: 12 pages, 5 figures, submitted to Europhysics Letter

    Multi-Player and Multi-Choice Quantum Game

    Full text link
    We investigate a multi-player and multi-choice quantum game. We start from two-player and two-choice game and the result is better than its classical version. Then we extend it to N-player and N-choice cases. In the quantum domain, we provide a strategy with which players can always avoid the worst outcome. Also, by changing the value of the parameter of the initial state, the probabilities for players to obtain the best payoff will be much higher that in its classical version.Comment: 4 pages, 1 figur

    RCS2 J232727.6-020437: An Efficient Cosmic Telescope at z=0.6986z=0.6986

    Full text link
    We present a detailed gravitational lens model of the galaxy cluster RCS2 J232727.6-020437. Due to cosmological dimming of cluster members and ICL, its high redshift (z=0.6986z=0.6986) makes it ideal for studying background galaxies. Using new ACS and WFC3/IR HST data, we identify 16 multiple images. From MOSFIRE follow up, we identify a strong emission line in the spectrum of one multiple image, likely confirming the redshift of that system to z=2.083z=2.083. With a highly magnified (ÎŒâ‰ł2\mu\gtrsim2) source plane area of ∌0.7\sim0.7 arcmin2^2 at z=7z=7, RCS2 J232727.6-020437 has a lensing efficiency comparable to the Hubble Frontier Fields clusters. We discover four highly magnified z∌7z\sim7 candidate Lyman-break galaxies behind the cluster, one of which may be multiply-imaged. Correcting for magnification, we find that all four galaxies are fainter than 0.5L⋆0.5 L_{\star}. One candidate is detected at >10σ{>10\sigma} in both Spitzer/IRAC [3.6] and [4.5] channels. A spectroscopic follow-up with MOSFIRE does not result in the detection of the Lyman-alpha emission line from any of the four candidates. From the MOSFIRE spectra we place median upper limits on the Lyman-alpha flux of 5−14×10−19 erg  s−1cm−25-14 \times 10^{-19}\, \mathrm{erg \,\, s^{-1} cm^{-2}} (5σ5\sigma).Comment: 14 pages, 9 figures, submitted to ApJ on 3/06/201

    Spitzer UltRa Faint SUrvey Program (SURFS UP). II. IRAC-Detected Lyman-Break Galaxies at 6 < z < 10 Behind Strong-Lensing Clusters

    Get PDF
    We study the stellar population properties of the IRAC-detected 6â‰Čzâ‰Č106 \lesssim z \lesssim 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program (SURFS UP). Using the Lyman Break selection technique, we find a total of 16 new galaxy candidates at 6â‰Čzâ‰Č106 \lesssim z \lesssim 10 with S/N≄3S/N \geq 3 in at least one of the IRAC 3.6ÎŒ3.6\mum and 4.5ÎŒ4.5\mum bands. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ∌1.2\sim 1.2--5.55.5. We find that the IRAC-detected 6â‰Čzâ‰Č106 \lesssim z \lesssim 10 sample is likely not a homogeneous galaxy population: some are relatively massive (stellar mass as high as 4×109 M⊙4 \times 10^9\,M_{\odot}) and evolved (age â‰Č500\lesssim 500 Myr) galaxies, while others are less massive (Mstellar∌108 M⊙M_{\text{stellar}}\sim 10^8\,M_{\odot}) and very young (∌10\sim 10 Myr) galaxies with strong nebular emission lines that boost their rest-frame optical fluxes. We identify two Lyα\alpha emitters in our sample from the Keck DEIMOS spectra, one at zLyα=6.76z_{\text{Ly}\alpha}=6.76 (in RXJ1347) and one at zLyα=6.32z_{\text{Ly}\alpha}=6.32 (in MACS0454). We show that IRAC [3.6]−[4.5][3.6]-[4.5] color, when combined with photometric redshift, can be used to identify galaxies likely with strong nebular emission lines within certain redshift windows.Comment: ApJ in pres

    Operator Spin Foam Models

    Full text link
    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. We discuss the examples: BF spin foam model, the BC model, and the model obtained by application of our framework to the EPRL intertwiners.Comment: 19 pages, 11 figures, RevTex4.

    Cost-effectiveness of introducing national seasonal influenza vaccination for adults aged 60 years and above in mainland China: a modelling analysis

    Get PDF
    BACKGROUND: China has an aging population with an increasing number of adults aged ≄ 60 years. Influenza causes a heavy disease burden in older adults, but can be alleviated by vaccination. We assessed the cost-effectiveness of a potential government-funded seasonal influenza vaccination program in older adults in China. METHODS: We characterized the health and economic impact of a fully funded influenza vaccination program for older adults using China-specific influenza disease burden, and related cost data, etc. Using a decision tree model, we calculated the incremental costs per quality-adjusted life year (QALY) gained of vaccination from the societal perspective, at a willingness-to-pay threshold equivalent to GDP per capita (US8840).Moreover,weestimatedthethresholdvaccinationcosts,underwhichthefullyfundedvaccinationprogramiscost−effectiveusingGDPpercapitaasthewillingness−to−paythreshold.RESULTS:Comparedtocurrentself−paidvaccination,afullyfundedvaccinationprogramisexpectedtoprevent19,812(958840). Moreover, we estimated the threshold vaccination costs, under which the fully funded vaccination program is cost-effective using GDP per capita as the willingness-to-pay threshold. RESULTS: Compared to current self-paid vaccination, a fully funded vaccination program is expected to prevent 19,812 (95% uncertainty interval, 7150-35,783) influenza-like-illness outpatient consultations per year, 9418 (3386-17,068) severe acute respiratory infection hospitalizations per year, and 8800 (5300-11,667) respiratory excess deaths due to influenza per year, and gain 70,212 (42,106-93,635) QALYs per year. Nationally, the incremental costs per QALY gained of the vaccination program is US4832 (3460-8307), with a 98% probability of being cost-effective. The threshold vaccination cost is US$10.19 (6.08-13.65). However, variations exist between geographical regions, with Northeast and Central China having lower probabilities of cost-effectiveness. CONCLUSIONS: Our results support the implementation of a government fully funded older adult vaccination program in China. The regional analysis provides results across settings that may be relevant to other countries with similar disease burden and economic status, especially for low- and middle-income countries where such analysis is limited

    Simplified Approach to Predicting Obstructive Coronary Disease With Integration of Coronary Calcium: Development and External Validation

    Get PDF
    BACKGROUND The Diamond-Forrester model was used extensively to predict obstructive coronary artery disease (CAD) but overestimates probability in current populations. Coronary artery calcium (CAC) is a useful marker of CAD, which is not routinely integrated with other features. We derived simple likelihood tables, integrating CAC with age, sex, and cardiac chest pain to predict obstructive CAD. METHODS AND RESULTS The training population included patients from 3 multinational sites (n=2055), with 2 sites for external testing (n=3321). We determined associations between age, sex, cardiac chest pain, and CAC with the presence of obstructive CAD, defined as any stenosis ≄50% on coronary computed tomography angiography. Prediction performance was assessed using area under the receiver-operating characteristic curves (AUCs) and compared with the CAD Consortium models with and without CAC, which require detailed calculations, and the updated Diamond-Forrester model. In external testing, the proposed likelihood tables had higher AUC (0.875 [95% CI, 0.862-0.889]) than the CAD Consortium clinical+CAC score (AUC, 0.868 [95% CI, 0.855-0.881]; P=0.030) and the updated Diamond-Forrester model (AUC, 0.679 [95% CI, 0.658-0.699]; P<0.001). The calibration for the likelihood tables was better than the CAD Consortium model (Brier score, 0.116 versus 0.121; P=0.005). CONCLUSIONS We have developed and externally validated simple likelihood tables to integrate CAC with age, sex, and cardiac chest pain, demonstrating improved prediction performance compared with other risk models. Our tool affords physicians with the opportunity to rapidly and easily integrate a small number of important features to estimate a patient's likelihood of obstructive CAD as an aid to clinical management

    Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

    Full text link
    When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study the above-mentioned transition between ground states. Here we show that decorating graphene with a sparse and regular array of superconducting nanodisks enables to continuously gate-tune the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the disks. Under perpendicular magnetic field, the competition between quantum fluctuations and disorder is responsible for the resilience at the lowest temperatures of a superconducting glassy state that persists above the upper critical field. Our results provide the entire phase diagram of the disorder and magnetic field-tuned transition and unveil the fundamental impact of quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure
    • 

    corecore