6,364 research outputs found

    Using object-based image analysis to detect laughing gull nests

    Get PDF
    Remote sensing has long been used to study wildlife; however, manual methods of detecting wildlife in aerial imagery are often time-consuming and prone to human error, and newer computer vision techniques have not yet been extensively applied to wildlife surveys. We used the object-based image analysis (OBIA) software eCognition to detect laughing gull (Leucophaeus atricilla) nests in Jamaica Bay as part of an ongoing monitoring effort at the John F. Kennedy International Airport. Our technique uses a combination of high resolution 4-band aerial imagery captured via manned aircraft with a multispectral UltraCam Falcon M2 camera, LiDAR point cloud data, and land cover data derived from a bathymetric LiDAR point cloud to classify and extract laughing gull nests. Our ruleset uses the site (topographic position of nest objects), tone (spectral characteristic of nest objects), shape, size, and association (nearby objects commonly found with the objects of interest that help identify them) elements of image interpretation, as well as NDVI and a sublevel object examination to classify and extract nests. The ruleset achieves a producer’s accuracy of 98% as well as a user’s accuracy of 65% and a kappa of 0.696, indicating that it extracts a majority of the nests in the imagery while reducing errors of commission to only 35% of the final results. The remaining errors of commission are difficult for the software to differentiate without also impacting the number of nests successfully extracted and are best addressed by a manual verification of output results as part of a semi-automated workflow in which the OBIA is used to complete the initial search of the imagery and the results are then systematically verified by the user to remove errors. This eliminates the need to manually search entire sets of imagery for nests, resulting in a much more efficient and less error prone methodology than previous unassisted image interpretation techniques. Because of the extensibility of OBIA software and the increasing availability of imagery due to small unmanned aircraft systems (sUAS), our methodology and its benefits have great potential for adaptation to other species surveyed using aerial imagery to enhance wildlife population monitoring

    Projected Deaths of Despair from COVID-19

    Get PDF
    More Americans could lose their lives to deaths of despair, deaths due to drug, alcohol, and suicide, if we do not do something immediately. Deaths of despair have been on the rise for the last decade, and in the context of COVID-19, deaths of despair should be seen as the epidemic within the pandemic. The goal of this report is to predict what deaths of despair we might see based on three assumptions during COVID-19: economic recovery, relationship between deaths of despair and unemployment, and geography. Across nine different scenarios, additional deaths of despair range from 27,644 (quick recovery, smallest impact of unemployment on deaths of despair) to 154,037 (slow recovery, greatest impact of unemployment on deaths of despair), with somewhere in the middle being around 68,000. However, these data are predictions. We can prevent these deaths by taking meaningful and comprehensive action as a nation

    Two-Phase Westward Encroachment of Basin and Range Extension into the Northern Sierra Nevada

    Get PDF
    Structural, geophysical, and thermochronological data from the transition zone between the Sierra Nevada and the Basin and Range province at latitude ~39°N suggest ~100 km westward encroachment of Basin and Range extensional deformation since the middle Miocene. Extension, accommodated primarily by cast dipping normal faults that bound west tilted, range-forming fault blocks, varies in magnitude from150% in the Wassuk and Singatse Ranges to the east. Geological and apatite fission track data from exhumed upper crustal sections in the Wassuk and Singatse Ranges point to rapid footwall cooling related to large magnitude extension starting at ~14-15 Ma. Farther to the west, geological and thermochronological data indicate a younger period of extension in the previously unextended Pine Nut Mountains, the Carson Range, and the Tahoe-Truckee depression initiated between 10 Ma and 3 Ma, and incipient post-0.5 Ma faulting to the west of the Tahoe-Truckee area. These data imply the presence of an extensional breakaway zone between the Singatse Range and the Pine Nut Mountains at ~14-15 Ma, forming the boundary between the Sierra Nevada and Basin and Range at that time. In addition, fission track data imply a Miocene preextensional geothermal gradient of 27 ± 5°C km -1 in the central Wassuk Range and 20 ± 5°C km -1 in the Singatse Range, much higher than the estimated early Tertiary gradient of 10 ± 5°C km -1 for the Sierra Nevada batholith. This might point to a significant increase in geothermal gradients coupled with a likely decrease in crustal strength enabling the initiation of extensional faulting. Apatite fission track, geophysical, and geological constraints across the Sierra Nevada-Basin and Range transition zone indicate a two-stage, coupled structural and thermal westward encroachment of the Basin and Range province into the Sierra Nevada since the middle Miocene

    Long‐lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111144/1/acel12329.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/111144/2/acel12329-sup-0001-SuppInfo.pd
    • 

    corecore