8 research outputs found
Drug Interaction Study Of Apixaban With Cyclosporine Or Tacrolimus: Results From A Phase 1, Randomized, Open-Label, Crossover Study In Healthy Volunteers
BACKGROUND
Solid organ transplant recipients commonly require anticoagulation. Apixaban (APX) is principally metabolized by CYP3A4, undergoes direct intestinal excretion, and is a substrate to P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) transporters. We examined the potential drug interaction between cyclosporine (CsA) and tacrolimus (Tac) [combined inhibitors of CYP3A4, P-gp and, BCRP] with APX.https://jdc.jefferson.edu/petposters/1005/thumbnail.jp
Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission
NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense
Metal Scrappers and Thieves: Scavenging for Survival and Profit
This book explores the little-known world of scrappers and metal thieves. Benjamin F. Stickle bases his study on field research collected while traversing communities with thieves and scrappers. Drawing on candid interviews, observations of criminals at work, and participation in the scrapping subculture, the volume describes the subculture of scrappers and identifies differences between scrappers and metal thieves. Through the offenders’ perspective, often quoting their candid responses, Stickle explores the motivations for metal theft as well as the techniques and methods for successfully committing theft. The book discusses how these methods and techniques are learned and identifies ways―often through the thieves’ own words―to prevent metal theft. Throughout the book, Stickle also challenges common assumptions about this community and identifies wider policy implications.https://digitalcommons.cedarville.edu/alum_books/1494/thumbnail.jp
Achievement of the Planetary Defense Investigations of the Double Asteroid Redirection Test (DART) Mission
Abstract
NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense.</jats:p
Achievement of the Planetary Defense Investigations of the Double Asteroid Redirection Test (DART) Mission
International audienceNASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1 σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β , resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense