36,885 research outputs found

    Spatial Distribution of Jack Pine Cones and Those Attacked by Insects

    Get PDF
    The middle crown and south quadrant of 6-m-tall jack pines, Pinus banksiana Lamb., produced significantly more cones than the rest of the tree. The number of cones attacked by Eucosma monitorana Heinrich was also highest in the middle crown and south quadrant. Laspeyresia toreuta (Grote) attacked the most cones in the middle crown. A positive, linear correlation existed between the number of cones attacked by inseets and cone abundanee per tree, indicating a response of the insect population to inereased food supply

    Explicit large nuclear charge limit of electronic ground states for Li, Be, B, C, N, O, F, Ne and basic aspects of the periodic table

    Get PDF
    This paper is concerned with the Schrödinger equation for atoms and ions with N=1N=1 to 10 electrons. In the asymptotic limit of large nuclear charge ZZ, we determine explicitly the low-lying energy levels and eigenstates. The asymptotic energies and wavefunctions are in good quantitative agreement with experimental data for positive ions, and in excellent qualitative agreement even for neutral atoms (Z=NZ=N). In particular, the predicted ground state spin and angular momentum quantum numbers (1S^1S for He, Be, Ne, 2S^2S for H and Li, 4S^4S for N, 2P^2P for B and F, and 3P^3P for C and O) agree with experiment in every case. The asymptotic Schrödinger ground states agree, up to small corrections, with the semiempirical hydrogen orbital configurations developed by Bohr, Hund, and Slater to explain the periodic table. In rare cases where our results deviate from this picture, such as the ordering of the lowest 1Do^1D^o and 3So^3S^o states of the carbon isoelectronic sequence, experiment confirms our predictions and not Hund's

    Universal Density Profile for Cosmic Voids

    Full text link
    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in Λ\LambdaCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., Mon. Not. R. Astron. Soc. 442, 462 (2014)] the presented density profile is shown to be universal even across tracer type, properly describing voids defined in halo and galaxy distributions of varying sparsity, allowing us to relate various void populations by simple rescalings. This provides a powerful framework to match theory and simulations with observational data, opening up promising perspectives to constrain competing models of cosmology and gravity.Comment: 5 pages, 3 figures. Matches PRL published version after minor correction

    Using hybrid GPU/CPU kernel splitting to accelerate spherical convolutions

    Full text link
    We present a general method for accelerating by more than an order of magnitude the convolution of pixelated functions on the sphere with a radially-symmetric kernel. Our method splits the kernel into a compact real-space component and a compact spherical harmonic space component. These components can then be convolved in parallel using an inexpensive commodity GPU and a CPU. We provide models for the computational cost of both real-space and Fourier space convolutions and an estimate for the approximation error. Using these models we can determine the optimum split that minimizes the wall clock time for the convolution while satisfying the desired error bounds. We apply this technique to the problem of simulating a cosmic microwave background (CMB) anisotropy sky map at the resolution typical of the high resolution maps produced by the Planck mission. For the main Planck CMB science channels we achieve a speedup of over a factor of ten, assuming an acceptable fractional rms error of order 1.e-5 in the power spectrum of the output map.Comment: 9 pages, 11 figures, 1 table, accepted by Astronomy & Computing w/ minor revisions. arXiv admin note: substantial text overlap with arXiv:1211.355

    Person-related and Treatment-related Barriers to Alcohol Treatment

    Get PDF
    Treatment underutilization by persons with alcohol use disorder is well-documented. This study examined barriers to treatment at the latter stages of the treatment-seeking process, which was conceptualized as recognizing the problem, deciding that change is necessary, deciding that professional help is required, and seeking care. All participants identified themselves as having a drinking problem that was severe enough to warrant treatment. Differences between those who had (Treatment Seekers) and those who had not (Comparison Controls) sought treatment were evaluated, including the experience of person-related (e.g., shame) and treatment-related (e.g., cost) barriers. Person-related barriers were more commonly endorsed by both groups than treatment-related barriers. Comparison Controls were more likely to endorse both types of barriers, especially the preference for handling the problem without treatment. Treatment-related barriers were less relevant than person-related barriers at the latter stage of help seeking. The significance of barriers endured after accounting for other differences, such as drinking-related negative consequences. Treatment implications are discussed
    corecore