216 research outputs found

    Formaldehyde Anti-Inversion at z=0.68 in the Gravitational Lens B0218+357

    Full text link
    We report new observations of the 110-111 (6 cm) and 211-212 (2 cm) transitions of ortho-formaldehyde (o-H2CO) in absorption at z=0.68466 toward the gravitational lens system B0218+357. Radiative transfer modeling indicates that both transitions are anti-inverted relative to the 4.6 K cosmic microwave background (CMB), regardless of the source covering factor, with excitation temperatures of ~1 K and 1.5-2 K for the 110-111 and 211-212 lines, respectively. Using these observations and a large velocity gradient radiative transfer model that assumes a gradient of 1 km s^-1 pc^-1, we obtain a molecular hydrogen number density of 2x10^3 cm^-3 < n(H2) < 1x10^4 cm^-3 and a column density of 2.5x10^13 cm^-2 < N(o-H2CO) < 8.9x10^13 cm^-2, where the allowed ranges conservatively include the range of possible source covering factors in both lines. The measurements suggest that H2CO excitation in the absorbing clouds in the B0218+357 lens is analogous to that in Galactic molecular clouds: it would show H2CO absorption against the CMB if it were not illuminated by the background quasar or if it were viewed from another direction.Comment: 10 pages, 6, figures, 6 table

    Kinematic Effects of Tidal Interaction on Galaxy Rotation Curves

    Get PDF
    We use self-consistent N-body models, in conjunction with models of test particles moving in galaxy potentials, to explore the initial effects of interactions on the rotation curves of spiral galaxies. Using nearly self-consistent disk/bulge/halo galaxy models (Kuijken & Dubinski 1995), we simulate the first pass of galaxies on nearly parabolic orbits; we vary orbit inclinations, galaxy halo masses and impact parameters. For each simulation, we mimic observed rotation curves of the model galaxies. Transient interaction-induced features of the curves include distinctly rising or falling profiles at large radii and pronounced bumps in the central regions. Remarkably similar features occur in our statistical sample of optical emission-line rotation curves of spiral galaxies in tight pairs and n-tuples.Comment: 9 pages, 2 figures, accepted for publication in ApJ Letter

    Probing Chemical Complexity of Amyloid Plaques in Alzheimer's Disease Mice using Hyperspectral Raman Imaging

    Get PDF
    One of the distinctive pathological features of Alzheimer's disease (AD) is the deposition of amyloid plaques within the brain of affected individuals. These plaques have traditionally been investigated using labeling techniques such as immunohistochemical imaging. However, the use of labeling can disrupt the structural integrity of the molecules being analyzed. Hence, it is imperative to employ label-free imaging methods for noninvasive examination of amyloid deposits in their native form, thereby providing more relevant information pertaining to AD. This study presents compelling evidence that label-free and nondestructive confocal Raman imaging is a highly effective approach for the identification and chemical characterization of amyloid plaques within cortical regions of an arcAβ mouse model of AD. Furthermore, this investigation elucidates how the spatial correlation of Raman signals can be exploited to identify robust Raman marker bands and discern proteins and lipids from amyloid plaques. Finally, this study uncovers the existence of distinct types of amyloid plaques in the arcAβ mouse brain, exhibiting significant disparities in terms of not only shape and size but also molecular composition

    High-Latitude HI in the Low Surface Brightness Galaxy UGC7321

    Full text link
    From the analysis of sensitive HI 21-cm line observations, we find evidence for vertically extended HI emission (|z|<~2.4 kpc) in the edge-on, low surface brightness spiral galaxy UGC7321. Three-dimensional modelling suggests that the HI disk of UGC7321 is both warped and flared, but that neither effect can fully reproduce the spatial distribution and kinematics of the highest z-height gas. We are able to model the high-latitude emission as an additional HI component in the form of a ``thick disk'' or ``halo'' with a FWHM~3.3 kpc. We find tentative evidence that the vertically extended gas declines in rotational velocity as a function of z, although we are unable to completely rule out models with constant V(z). In spite of the low star formation rate of UGC7321, energy from supernovae may be sufficient to sustain this high-latitude gas. However, alternative origins for this material, such as slow, sustained infall, cannot yet be excluded.Comment: to appear in the August 20 Astrophysical Journal; 17 pages; version with full resolution figures available at http://cfa-www.harvard.edu/~lmatthew

    Freeze-casting for PLGA/carbonated apatite composite scaffolds: structure and properties

    Get PDF
    This paper focuses on the fabrication of three-dimensional porous PLGA-biomimetic carbonated apatite composite scaffolds by freeze-casting and using dimethyl carbonate as a solvent. Several charge/polymer ratios were tested in order to finely understand the influence of the filler rate on the scaffold porosity and mechanical and degradation properties using complementary characterization techniques (SEM, mercury porosimetry and X-ray microtomography). It was demonstrated that the apatite ratio within the composite scaffold has a strong influence in terms of architecture, material cohesion, mechanical properties and in vitro degradation properties. An optimum biomimetic apatite ratio was reached to combine good mechanical properties (higher rigidity) and material cohesion. In vitro degradation studies showed that higher apatite filler rates limited PLGA degradation and enhanced the hydrophilicity of the scaffolds which is expected to improve the biological properties of the scaffolds in addition to the bioactivity related to the presence of the apatite analogous to bone mineral

    Accredited qualifications for capacity development in disaster risk reduction and climate change adaptation

    Get PDF
    Increasingly practitioners and policy makers working across the globe are recognising the importance of bringing together disaster risk reduction and climate change adaptation. From studies across 15 Pacific island nations, a key barrier to improving national resilience to disaster risks and climate change impacts has been identified as a lack of capacity and expertise resulting from the absence of sustainable accredited and quality assured formal training programmes in the disaster risk reduction and climate change adaptation sectors. In the 2016 UNISDR Science and Technology Conference on the Implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030, it was raised that most of the training material available are not reviewed either through a peer-to-peer mechanism or by the scientific community and are, thus, not following quality assurance standards. In response to these identified barriers, this paper focuses on a call for accredited formal qualifications for capacity development identified in the 2015 United Nations landmark agreements in DRR and CCA and uses the Pacific Islands Region of where this is now being implemented with the launch of the Pacific Regional Federation of Resilience Professionals, for DRR and CCA. A key issue is providing an accreditation and quality assurance mechanism that is shared across boundaries. This paper argues that by using the United Nations landmark agreements of 2015, support for a regionally accredited capacity development that ensures all countries can produce, access and effectively use scientific information for disaster risk reduction and climate change adaptation. The newly launched Pacific Regional Federation of Resilience Professionals who work in disaster risk reduction and climate change adaptation may offer a model that can be used more widely

    Extinctions at 7um and 15um from the ISOGAL survey

    Full text link
    The extinction laws at 7um and 15um are derived for more than 120 sightlines in the inner Galactic plane based on the ISOGAL survey data and the near-infrared data from DENIS and 2MASS. The tracers are the ISOGAL point sources with [7]-[15]<0.4 which are RGB tip stars or early AGB stars with moderate mass loss. They have well-defined intrinsic color indices (J-Ks)_0, (Ks-[7])_0 and (Ks-[15])_0. By a linear fitting of the observed color indices Ks-[7] and Ks-[15] to the observed J-Ks, we obtain the ratio between the E(Ks-[7]) and E(Ks-[15]) color excesses and E(J-Ks). We infer the selective extinctions at 7 and 15um in terms of the near-infrared extinction in the Ks band. The distribution of the derived extinctions around 7 micron (A_7) is well represented by a Gaussian function, with the peak at about 0.47A_Ks and ranging from 0.33 to 0.55A_Ks (using the near-infrared extinctions of Rieke & Lebovsky 1985). There is some evidence that A_7/A_Ks may vary significantly depending on the line of sight. The derived selective extinction at 15um suffers uncertainty mainly from the dispersion in the intrinsic color index (Ks-[15])_0 which is affected by dust emission from mass-losing AGB stars. The peak value of A_15 is around 0.40A_Ks.Comment: 21 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    The Orbit of the Orphan Stream

    Full text link
    We use recent SEGUE spectroscopy and SDSS and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the "Orphan Stream." We fit orbital parameters to the data, and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc and 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud have velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but no other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l,b)=(253,49) deg., which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g-r)_0=0.22. The BHB stars have a low metallicity of [Fe/H]=-2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6x10^11 Solar masses, integrated to 60 kpc from the Galactic center. Our best fit is found with a logarithmic halo speed of v_halo=73+/-24 km/s, a disk+bulge mass of M(R< 60 kpc) = 1.3x10^11 Solar masses, and a halo mass of M(R< 60 kpc) = 1.4x10^11 Solar masses. The Orphan Stream is projected to extend to 90 kpc from the Galactic center, and measurements of these distant parts of the stream would be a powerful probe of the mass of the Milky Way (truncated).Comment: 17 Figures, ApJ accepte

    Specificity of the metabolic signatures of fish from cyanobacteria rich lakes

    Get PDF
    International audienceThe liver metabolomes of fish from cyanobacterial-dominated ponds were investigated. Cyanobacterial metabolites were only be detected in cyanobacterial dominated ponds. The metabolomes of the 2 fish species exhibit similar correlation with cyanobacteria occurrence. Correlations between the levels of some metabolites and phycocyanin or pH were observed. a b s t r a c t With the increasing impact of the global warming, occurrences of cyanobacterial blooms in aquatic ecosystems are becoming a main worldwide ecological concern. Due to their capacity to produce potential toxic metabolites, interactions between the cyanobacteria, their cyanotoxins and the surrounding freshwater organisms have been investigated during the last past years. Non-targeted metabolomic analyses have the powerful capacity to study simultaneously a high number of metabolites and thus to investigate in depth the molecular signatures between various organisms encountering different environmental scenario, and potentially facing cyanobacterial blooms. In this way, the liver metabolomes of two fish species (Perca fluviatilis and Lepomis gibbosus) colonizing various peri-urban lakes of theÎle-de-France region displaying high biomass of cyanobacteria, or not, were investigated. The fish metabolome hydrophilic fraction was analyzed by 1 H NMR analysis coupled with Batman peak treatment for the quantification and the annotation attempt of the metabolites. The results suggest that similar metabolome profiles occur in both fish species, for individuals collected from cyanobacterial blooming lakes compared to organism from non-cyanobacterial dominant environments. Overall, such environmental metabolomic pilot study provides new research perspectives in ecology and ecotoxicology fields, and may notably provide new information concerning the cyanobacteria/fish eco-toxicological interactions

    Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson’s disease in vivo

    Get PDF
    Abstract: Abnormal alpha-synuclein (αSyn) and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim to visualize αSyn inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. The fluorescent pyrimidoindole derivative THK-565 probe was characterized by means of recombinant fibrils and brains from 10- to 11-month-old M83 mice. Concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging were subsequently performed in vivo. Structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 T as well as scanning transmission x-ray microscopy (STXM) were performed to characterize the iron deposits in the perfused brains. Immunofluorescence and Prussian blue staining were further performed on brain slices to validate the detection of αSyn inclusions and iron deposition. THK-565 showed increased fluorescence upon binding to recombinant αSyn fibrils and αSyn inclusions in post-mortem brain slices from patients with PD and M83 mice. Administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 min post-intravenous injection by wide-field fluorescence compared to nontransgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. In conclusion, we demonstrated in vivo mapping of αSyn by means of noninvasive epifluorescence and vMSOT imaging and validated the results by targeting the THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo
    corecore