17 research outputs found

    Plant-soil interaction and soil carbon turnover across geochemical and topographic gradients in African tropical montane forests

    Get PDF
    Tropical forests play a central role in global carbon (C) cycles due to the high exchange rate of carbon between plants, soil, and the atmosphere. Nutrient availability in tropical forest systems controls these exchanges via their impact on tree growth, carbon productivity, and stocks. Research shows that local edaphic factors such as soil parent material and topography codetermine nutrient availability. However, the process knowledge of how tropical forests respond to changes in nutrients, the chemistry of the local parent material and topography, and the effect this has on C cycling between plants, soils, and the atmosphere remains unclear. This gap in knowledge obstructs the mechanistic understanding of the controls of C cycling in tropical forest systems. Furthermore, data for African tropical forests are scarce, as most research has focused mainly on Amazon and South Asia. This thesis tried to answer these questions and provided directions on where future research can focus. This thesis is based on both experimental (field and laboratory) and observational studies at different sites in the Eastern Congo Basin and along the Albertine Rift Valley System. It has three major parts: (a) nutrient uptake and distribution in the canopy of African tropical forests, (b) C stocks, Net Primary Productivity (NPP), and NPP C allocation between plant compartments, and (c) soil potential heterotrophic respiration (SPR) and soil organic carbon (SOC) turnover rate in forests developed along geochemical and topographic gradients. Specifically, the thesis focused on three contrasting geochemical regions (mafic magmatic, felsic metamorphic, and a mixture of sedimentary rock but distinct from mafic and felsic. Throughout the thesis, the three regions are referred to as “mafic”, “felsic”, and “sedimentary). Chapter 2 assessed canopy chemistry of 344 samples collected from different tree species growing on different parent materials and topographic positions. The data shows that tropical forest canopy chemistry shifts significantly when local soils and parent material geochemistry indicate fertility constraints, mainly due to low amounts of rock-derived nutrients. In contrast, topography did not affect canopy chemistry in the three investigated geochemical regions. Chapter 3 assessed the effects that soil parent material and topography as drivers of soil fertility have on forest NPP, C allocation, and biomass C stocks and how they relate to SOC stocks. Here a combination of two years monitoring of vegetation growth and soil geochemical properties measurements were used. The thesis found that soil fertility parameters reflecting the local parent material are the main drivers of NPP and C allocation patterns in tropical montane forests, resulting in significant differences in below to aboveground biomass ratio across geochemical regions. Topography did not constrain the variability in C allocation and NPP. Furthermore, SOC stocks showed no relation to C input in tropical forests. Instead, plant C input seemingly exceeded the maximum potential of these soils to stabilize C. Chapter 4 assessed potential heterotrophic soil respiration and SOC turnover via lab-based incubation experiments. Here, depth explicit SPR and Δ14C of samples originating from the three geochemical regions and topographic positions were measured under constant temperature and moisture conditions. The results revealed distinct patterns in soil respiration with soil depth and parent material geochemistry. The topographic origin of the samples was not the main determinant of the observed respiration rates and Δ14C. However, in situ soil hydrological conditions likely influence soil C turnover by inhibiting decomposition in valley subsoils. Overall, the results of this thesis demonstrate that, even in deeply weathered tropical soils, parent material has a long-lasting effect on soil geochemistry that can affect (1) nutrient availability, and uptake, (2) NPP, and C allocation, ultimately affecting differently above and belowground biomass, (3) microbial activity, the size of subsoil C stocks and the turnover rate of C in soil. Therefore, soil parent material and its control on soil chemistry need to be taken into account to predict C fluxes and to understand C cycling in African old-growth tropical forest systems

    Application of remote sensing data to improve the water and soil resource management of Rwanda

    Get PDF
    The Rwandan agriculture strongly relies in the dry seasons on the water stored in artificial reservoirs of various sizes for irrigation purposes. Furthermore, the success of irrigation depends on a wide range of soil properties which directly affect the moisture regime of the growing medium. By integrating remote sensing and auxiliary data the objectives of our study are to monitor the water level fluctuation in the reservoirs, estimate the volume of water available for irrigation and to combine this information with soil property maps to support the decision making for sustainable irrigation water management in a study area in Southern Rwanda. For water level and volume estimation a series of Sentinel-1 (product type: GRD, acquisition mode: IW, polarizations HH and VH) data were obtained covering the study area and spanning over a period of two years. To map the extent of water bodies the Radar-Based Water Body Mapping module of the Water Observation and Information System (WOIS) was used. High-resolution optical data (Sentinel-2) were used for validation in cloud-free periods. To estimate the volume changes in the reservoirs, we combined the information derived from the water body mapping procedure and digital elevation models. For sustainable irrigation water management, digital soil property maps were developed by the application of wide range of environmental covariates related to soil forming factors. To develop covariates which represent the land use a time series analysis of the 2 years of Sentinel-1 data was performed. As auxiliary soil data, the ISRIC-WISE harmonized soil profile database was used. The developed digital soil mapping approach is integrated into a new WOIS workflow

    Soil carbon respiration in tropical forest soils along geomorphic and geochemical gradients

    Get PDF
    Tropical ecosystems and the soils therein have been reported as one of the most important and largest terrestrial carbon (C) pools and are considered important climate regulator. Carbon stabilization mechanisms in these ecosystems are often complex, as these mechanisms crucially rely on the interplay of geology, topography, climate, and biology. Future predictions of the perturbation of the soil carbon pool ultimately depend on our mechanistic understanding of these complex interactions. Using laboratory incubation experiments, we investigated if carbon release from soils through heterotrophic respiration in the African highland forests of the Eastern Congo Basin follows predictable patterns related to topography, soil depth or geochemical soil properties that can be described at the landscape scale and ultimately be used to improve the spatial accuracy of soil C respiration in mechanistic models. In general, soils developed on basalt and granite parent material (mafic and felsic geochemistry of parent material) showed significantly (p <0.05) higher specific respiration than soils developed on sedimentary rocks (mixed geochemistry) with highest rates measured for soils developed on granite. For soils developed on basalt, specific respiration decreased two-fold with soil depth, but not for soils developed on granite or sedimentary rocks. No significant differences in respiration under tropical forest were found in relation to topography for any soil and geochemical background. Using a non-linear, stochastic gradient boosting machine learning approach we show that soil biological, physical and chemical properties can predict the pattern of specific soil respiration (R2=0.41, p<0.05). An assessment of the relative importance of the included predictors for soil respiration resulted in 43 % of the model being driven by geochemistry (pedogenic oxides, nutrient availability), 12 % driven by soil texture and clay mineralogy, 34 % by microbial biomass, C:N, and C:P ratios and 11 % by topographic indices. We conclude that, in order to explain soil C respiration patterns in tropical forests, a complex set of variables need to be considered that differs depending on the local bedrock chemistry. Its effect is likely related to the varying strength of C stabilization with minerals as well as nutrient availability that might drive C input patterns and microbial turnover

    Soil geochemistry – and not topography – as a major driver of carbon allocation, stocks, and dynamics in forests and soils of African tropical montane ecosystems

    Get PDF
    The lack of field-based data in the tropics limits our mechanistic understanding of the drivers of net primary productivity (NPP) and allocation. Specifically, the role of local edaphic factors - such as soil parent material and topography controlling soil fertility as well as water and nutrient fluxes - remains unclear and introduces substantial uncertainty in understanding net ecosystem productivity and carbon (C) stocks. Using a combination of vegetation growth monitoring and soil geochemical properties, we found that soil fertility parameters reflecting the local parent material are the main drivers of NPP and C allocation patterns in tropical montane forests, resulting in significant differences in below- to aboveground biomass components across geochemical (soil) regions. Topography did not constrain the variability in C allocation and NPP. Soil organic C stocks showed no relation to C input in tropical forests. Instead, plant C input seemingly exceeded the maximum potential of these soils to stabilize C. We conclude that, even after many millennia of weathering and the presence of deeply developed soils, above- and belowground C allocation in tropical forests, as well as soil C stocks, vary substantially due to the geochemical properties that soils inherit from parent material

    Organic matter cycling along geochemical, geomorphic and disturbance gradients in forests and cropland of the African Tropics – Project TropSOC Database Version 1.0

    Get PDF
    The African Tropics are hotspots of modern-day land-use change and are, at the same time, of great relevance for the cycling of carbon (C) and nutrients between plants, soils and the atmosphere. However, the consequences of land conversion on biogeochemical cycles are still largely unknown as they are not studied in a landscape context that defines the geomorphic, geochemically and pedological framework in which biological processes take place. Thus, the response of tropical soils to disturbance by erosion and land conversion is one of the great uncertainties in assessing the carrying capacity of tropical landscapes to grow food for future generations and in predicting greenhouse gas fluxes (GHG) from soils to the atmosphere and, hence, future earth system dynamics. Here, we describe version 1.0 of an open access database created as part of the project &ldquo;Tropical soil organic carbon dynamics along erosional disturbance gradients in relation to variability in soil geochemistry and land use&rdquo; (TropSOC). TropSOC v1.0 contains spatial and temporal explicit data on soil, vegetation, environmental properties and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020 as part of several monitoring and sampling campaigns in the Eastern Congo Basin and the East African Rift Valley System. The results of several laboratory experiments focusing on soil microbial activity, C cycling and C stabilization in soils complement the dataset to deliver one of the first landscape scale datasets to study the linkages and feedbacks between geology, geomorphology and pedogenesis as controls on biogeochemical cycles in a variety of natural and managed systems in the African Tropics. The hierarchical and interdisciplinary structure of the TropSOC database allows for linking a wide range of parameters and observations on soil and vegetation dynamics along with other supporting information that may also be measured at one or more levels of the hierarchy. TropSOC&rsquo;s data marks a significant contribution to improve our understanding of the fate of biogeochemical cycles in dynamic and diverse tropical African (agro-)ecosystems. TropSOC v1.0 can be accessed through the supplementary material provided as part of this manuscript or as a separate download via the websites of the Congo Biogeochemistry observatory and the GFZ data repository where version updates to the database will be provided as the project develops.</p

    Controls on heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils

    No full text
    Heterotrophic soil respiration is an important component of the global terrestrial carbon (C) cycle, driven by environmental factors acting from local to continental scales. For tropical Africa, these factors and their interactions remain largely unknown. Here, using samples collected along strong topographic and geochemical gradients in the East African Rift Valley, we study how soil chemistry and soil fertility, derived from the geochemical composition of soil parent material, can drive soil respiration even after many millennia of weathering and soil development. To address the drivers of soil respiration, we incubated soils from three regions with contrasting geochemistry (mafic, felsic, and mixed sedimentary) sampled along slope gradients. For three soil depths, we measured the potential maximum heterotrophic respiration under stable environmental conditions as well as the radiocarbon content (Δ14C) of the bulk soil and respired CO2. We found that soil microbial communities were able to mineralize C from fossil as well as other poor quality C sources under laboratory conditions representative of tropical topsoils. Furthermore, despite similarities in terms of climate, vegetation, and the size of soil C stocks, soil respiration showed distinct patterns with soil depth and parent material geochemistry. The topographic origin of our samples was not a main determinant of the observed respiration rates and Δ14C. In situ, however, soil hydrological conditions likely influence soil C stability by inhibiting decomposition in valley subsoils. Our study shows that soil fertility conditions are the main determinant of C stability in tropical forest soils. Further, in the presence of organic carbon sources of poor quality or the presence of strong mineral related C stabilization, microorganisms tend to discriminate against these sources in favor of more accessible forms of soil organic matter as energy sources, resulting in a slower rate of C cycling. Our results demonstrate that even in deeply weathered tropical soils, parent material has a long-lasting effect on soil chemistry that can influence and control microbial activity, the size of subsoil C stocks, and the turnover of C in soil. Soil parent material and its lasting control on soil chemistry need to be taken into account to understand and predict C stabilization and rates of C cycling in tropical forest soils

    Carbon release from tropical forest soils informed by soil chemistry, fertility, and carbon quality derived from geochemistry of the parent material

    No full text
    Tropical forest soils are a vital component of the global carbon (C) cycle and their response to environmental change will determine future atmospheric carbon dioxides (CO2). For example, increasing biomass productivity in tropical forests suggests a potential sink for C. However, its storage and stability are driven by factors acting from small to large scale. For tropical Africa, these factors are not well known and documented. Predicting tropical soil C dynamics ultimately depends on our understanding and the ability to determine the primary environmental controls on soil organic carbon content and respiration. Here, using samples collected along strong geochemical gradients in the East African Rift Valley, we demonstrate how soil chemistry and soil fertility, derived from the geochemical composition of soil parent material, can drive soil respiration even in deeply weathered soils. To address the drivers of soil respiration, we incubated soils from three regions with contrasting geochemistry (mafic, felsic, and mixed sedimentary). For three soil depths, we measured the potential maximum heterotrophic respiration as well as the radiocarbon isotopic signature (Δ14C) of the bulk soil and respired CO2 under stable environmental conditions. We found that soil microbial communities were able to mineralize C from fossil as well as other poor quality C sources under laboratory conditions representative of tropical topsoils. Despite similarities in terms of climate, vegetation, and the size of soil C stocks, soil respiration showed distinct patterns with soil depth and parent material geochemistry. Our study shows that soil fertility conditions are the main determinant of C stability in tropical forest soils. Further, in the presence of organic carbon sources of poor quality or the presence of strong mineral-related C stabilization, microorganisms tend to discriminate against these sources in favor of more accessible forms of soil organic matter as energy sources, resulting in a slower rate of C cycling. Our results demonstrate that even in deeply weathered tropical soils, parent material has a long-lasting effect on soil chemistry that can influence and control microbial activity, the size of subsoil C stocks, and the turnover of C in soil. Soil parent material and its lasting control on soil chemistry need to be taken into account to understand and predict C stabilization and rates of C cycling in tropical forest soils

    Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils

    No full text
    Heterotrophic soil respiration is an important component of the global terrestrial carbon (C) cycle, driven by environmental factors acting from local to continental scales. For tropical Africa, these factors and their interactions remain largely unknown. Here, using samples collected along topographic and geochemical gradients in the East African Rift Valley, we study how soil chemistry and fertility drive soil respiration of soils developed from different parent materials even after many millennia of weathering. To address the drivers of soil respiration, we incubated soils from three regions with contrasting geochemistry (mafic, felsic and mixed sediment) sampled along slope gradients. For three soil depths, we measured the potential maximum heterotrophic respiration under stable environmental conditions and the radiocarbon content (Delta C-14) of the bulk soil and respired CO2. Our study shows that soil fertility conditions are the main determinant of C stability in tropical forest soils. We found that soil microorganisms were able to mineralize soil C from a variety of sources and with variable C quality under laboratory conditions representative of tropical topsoil. However, in the presence of organic carbon sources of poor quality or the presence of strong mineral-related C stabilization, microorganisms tend to discriminate against these energy sources in favour of more accessible forms of soil organic matter, resulting in a slower rate of C cycling. Furthermore, despite similarities in climate and vegetation, soil respiration showed distinct patterns with soil depth and parent material geochemistry. The topographic origin of our samples was not a main determinant of the observed respiration rates and Delta C-14. In situ, however, soil hydrological conditions likely influence soil C stability by inhibiting decomposition in valley subsoils. Our results demonstrate that, even in deeply weathered tropical soils, parent material has a long-lasting effect on soil chemistry that can influence and control microbial activity, the size of subsoil C stocks and the turnover of C in soil. Soil parent material and its control on soil chemistry need to be taken into account to understand and predict C stabilization and rates of C cycling in tropical forest soils.ISSN:2199-3971ISSN:2199-398

    Microbial properties in tropical montane forest soils developed from contrasting parent material – An incubation experiment

    No full text
    Background Soil microbes are key drivers of carbon (C) and nutrient cycling in terrestrial ecosystems, and their properties are influenced by the relationship between resource demand and availability. Aims Our objective was to investigate patterns of microbial properties and their controls to understand whether they differ between soils derived from geochemically contrasting parent material in tropical montane forests. Methods We measured microbial biomass C (MBCSoil), potential extracellular enzyme activity (pEEA), and assessed microbial investments in C and nutrient acquisition at the beginning and end of a 120-day laboratory incubation experiment using soils developed from three geochemically contrasting parent material (i.e., mafic, mixed sediment, and felsic) and three soil depths (0–70 cm). Results We found that MBCSoil and pEEA were highest in soils developed from the mafic parent material. Microbial investment in C acquisition was highest in soils developed from mixed sedimentary rocks and lowest in soils developed from the felsic parent material. We propose that our findings are related to the strength of contrasting mineral-related C stabilization mechanisms and varying C quality. No predominant microbial investment in nitrogen (N) acquisition was observed, whereas investment in phosphorus (P) acquisition was highest in subsoils. We found lower microbial investment in C acquisition in subsoils indicating relatively high C availability, and that microbes in subsoils can substantially participate in C cycling and limit C storage if moisture and oxygen conditions are suitable. Geochemical soil properties and substrate quality were important controls on MBCSoil per unit soil organic C (MBCSOC), particularly after the exhaustion of labile and fast cycling C, that is, at the end of the incubation. Conclusion Although a laboratory incubation experiment cannot reflect real-world conditions, it allowed us to understand how soil properties affect microbial properties. We conclude that parent material is an important driver of microbial properties in tropical montane forests despite the advanced weathering degree of soils.ISSN:1436-8730ISSN:0044-3263ISSN:1522-262
    corecore