158 research outputs found

    Coupling techniques for nonlinear hyperbolic equations. IV. Multi-component coupling and multidimensional well-balanced schemes

    Get PDF
    This series of papers is devoted to the formulation and the approximation of coupling problems for nonlinear hyperbolic equations. The coupling across an interface in the physical space is formulated in term of an augmented system of partial differential equations. In an earlier work, this strategy allowed us to develop a regularization method based on a thick interface model in one space variable. In the present paper, we significantly extend this framework and, in addition, encompass equations in several space variables. This new formulation includes the coupling of several distinct conservation laws and allows for a possible covering in space. Our main contributions are, on one hand, the design and analysis of a well-balanced finite volume method on general triangulations and, on the other hand, a proof of convergence of this method toward entropy solutions, extending Coquel, Cockburn, and LeFloch's theory (restricted to a single conservation law without coupling). The core of our analysis is, first, the derivation of entropy inequalities as well as a discrete entropy dissipation estimate and, second, a proof of convergence toward the entropy solution of the coupling problem.Comment: 37 page

    Coupling techniques for nonlinear hyperbolic equations. I. Self-similar diffusion for thin interfaces

    Full text link
    We investigate various analytical and numerical techniques for the coupling of nonlinear hyperbolic systems and, in particular, we introduce here an augmented formulation which allows for the modeling of the dynamics of interfaces between fluid flows. The main technical difficulty to be overcome lies in the possible resonance effect when wave speeds coincide and global hyperbolicity is lost. As a consequence, non-uniqueness of weak solutions is observed for the initial value problem which need to be supplemented with further admissibility conditions. This first paper is devoted to investigating these issues in the setting of self-similar vanishing viscosity approximations to the Riemann problem for general hyperbolic systems. Following earlier works by Joseph, LeFloch, and Tzavaras, we establish an existence theorem for the Riemann problem under fairly general structural assumptions on the nonlinear hyperbolic system and its regularization. Our main contribution consists of nonlinear wave interaction estimates for solutions which apply to resonant wave patterns.Comment: 28 page

    Convergent and conservative schemes for nonclassical solutions based on kinetic relations

    Full text link
    We propose a new numerical approach to compute nonclassical solutions to hyperbolic conservation laws. The class of finite difference schemes presented here is fully conservative and keep nonclassical shock waves as sharp interfaces, contrary to standard finite difference schemes. The main challenge is to achieve, at the discretization level, a consistency property with respect to a prescribed kinetic relation. The latter is required for the selection of physically meaningful nonclassical shocks. Our method is based on a reconstruction technique performed in each computational cell that may contain a nonclassical shock. To validate this approach, we establish several consistency and stability properties, and we perform careful numerical experiments. The convergence of the algorithm toward the physically meaningful solutions selected by a kinetic relation is demonstrated numerically for several test cases, including concave-convex as well as convex-concave flux-functions.Comment: 31 page

    Some remarks about flows of Hilbert-Schmidt operators

    No full text
    International audienceThis paper deals with bracket flows of Hilbert-Schmidt operators. We establish elementary convergence results for such flows and discuss some of their consequences

    Diagonalisation asymptotique d'opérateurs de Hilbert-Schmidt

    No full text
    Dans ce poster, nous présentons quelques propriétés asymptotiques de flots dans l'espace des opérateurs de Hilbert-Schmidt

    High order asymptotic preserving scheme for linear kinetic equations with diffusive scaling

    Full text link
    In this work, high order asymptotic preserving schemes are constructed and analysed for kinetic equations under a diffusive scaling. The framework enables to consider different cases: the diffusion equation, the advection-diffusion equation and the presence of inflow boundary conditions. Starting from the micro-macro reformulation of the original kinetic equation, high order time integrators are introduced. This class of numerical schemes enjoys the Asymptotic Preserving (AP) property for arbitrary initial data and degenerates when ϵ\epsilon goes to zero into a high order scheme which is implicit for the diffusion term, which makes it free from the usual diffusion stability condition. The space discretization is also discussed and high order methods are also proposed based on classical finite differences schemes. The Asymptotic Preserving property is analysed and numerical results are presented to illustrate the properties of the proposed schemes in different regimes

    On the stability of totally upwind schemes for the hyperbolic initial boundary value problem

    Full text link
    In this paper, we present a numerical strategy to check the strong stability (or GKS-stability) of one-step explicit totally upwind scheme in 1D with numerical boundary conditions. The underlying approximated continuous problem is a hyperbolic partial differential equation. Our approach is based on the Uniform Kreiss-Lopatinskii Condition, using linear algebra and complex analysis to count the number of zeros of the associated determinant. The study is illustrated with the Beam-Warming scheme together with the simplified inverse Lax-Wendroff procedure at the boundary

    Coupling techniques for nonlinear hyperbolic equations. III. The well-balanced approximation of thick interfaces

    Full text link
    We continue our analysis of the coupling between nonlinear hyperbolic problems across possibly resonant interfaces. In the first two parts of this series, we introduced a new framework for coupling problems which is based on the so-called thin interface model and uses an augmented formulation and an additional unknown for the interface location; this framework has the advantage of avoiding any explicit modeling of the interface structure. In the present paper, we pursue our investigation of the augmented formulation and we introduce a new coupling framework which is now based on the so-called thick interface model. For scalar nonlinear hyperbolic equations in one space variable, we observe that the Cauchy problem is well-posed. Then, our main achievement in the present paper is the design of a new well-balanced finite volume scheme which is adapted to the thick interface model, together with a proof of its convergence toward the unique entropy solution (for a broad class of nonlinear hyperbolic equations). Due to the presence of a possibly resonant interface, the standard technique based on a total variation estimate does not apply, and DiPerna's uniqueness theorem must be used. Following a method proposed by Coquel and LeFloch, our proof relies on discrete entropy inequalities for the coupling problem and an estimate of the discrete entropy dissipation in the proposed scheme.Comment: 21 page
    • …
    corecore