25 research outputs found

    Probiotic Bacteria Produce Conjugated Linoleic Acid Locally in the Gut That Targets Macrophage PPAR γ to Suppress Colitis

    Get PDF
    Inflammatory bowel disease (IBD) therapies are modestly successful and associated with significant side effects. Thus, the investigation of novel approaches to prevent colitis is important. Probiotic bacteria can produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-inflammatory effects. This study aimed to investigate the cellular and molecular mechanisms underlying the anti-inflammatory efficacy of probiotic bacteria using a mouse model of colitis. The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in a mouse model of DSS colitis. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen, blood and colonic lamina propria cells were phenotypically and functionally characterized. Fecal samples and colonic contents were collected to determine the effect of VSL#3 and CLA on gut microbial diversity and CLA production. CLA and VSL#3 treatment ameliorated colitis and decreased colonic bacterial diversity, a finding that correlated with decreased gut pathology. Colonic CLA concentrations were increased in response to probiotic bacterial treatment, but without systemic distribution in blood. VSL#3 and CLA decreased macrophage accumulation in the MLN of mice with DSS colitis. The loss of PPAR γ in myeloid cells abrogated the protective effect of probiotic bacteria and CLA in mice with DSS colitis. Probiotic bacteria modulate gut microbial diversity and favor local production of CLA in the colon that targets myeloid cell PPAR γ to suppress colitis

    A Potential Role for Pro-Inflammatory Cytokines in the Development of Insulin Resistance in Horses

    No full text
    Understanding the mechanisms involved in the development of insulin resistance in horses should enable development of effective treatment and prevention strategies. Current knowledge of these mechanisms is based upon research in obese humans and rodents, in which there is evidence that the increased production of pro-inflammatory cytokines by adipose tissue negatively influences insulin signaling in insulin-responsive tissues. In horses, plasma concentrations of the cytokine, tumor necrosis factor-α, have been positively correlated with body fatness and insulin resistance, leading to the hypothesis that inflammation may reduce insulin sensitivity in horses. However, little evidence has documented a tissue site of production and a direct link between inflammation and induction of insulin resistance has not been established. Several mechanisms are reviewed in this article, including the potential for macrophage infiltration, hyperinsulinemia, hypoxia, and lipopolysaccharide to increase pro-inflammatory cytokine production by adipose tissue of obese horses. Clearly defining the role of cytokines in reduced insulin sensitivity of horses will be a very important step in determining how obesity and insulin resistance are related

    Heat Stress Increases Mammary Epithelial Cells and Reduces Viable Immune Cells in Milk of Dairy Cows

    No full text
    Somatic cells normally found in milk are generally either immune cells such as lymphocytes, monocytes and granulocytes, or mammary epithelial cells. The number and composition of somatic cells in milk can be influenced by a variety of factors, including infection and temperature-humidity index. The objective of this study was to determine the specific effects of heat stress on the cellular composition of the somatic cell population in milk. We used flow cytometry to ascertain the concentration and viability of mammary epithelial cells, T cells, monocyte/macrophage, and granulocytes in milk from cows maintained under heat stressed conditions compared to thermoneutral conditions. We found a significant 10% increase in the natural log concentration of epithelial cells in the milk of heat stressed cows compared to thermoneutral cows (9.3 vs. 8.4 ln(cells/mL, p = 0.02)). We also found a 12% decrease in the log concentration of live CD45+ cells (p = 0.04), and a 17% decrease in the log concentration of live CD45+ granulocytes (p = 0.04). No changes were found in CD3+CD45+ cells or CD14+CD45+ cells, however, we noted an unusual population of CD14+CD45− cells that showed significant increases of 10% (p = 0.03) and 12% (p = 0.01) in the log concentration of total and dead cells, respectively, under heat stressed conditions. These results suggest that heat stress influences the relative populations and viability of some somatic cells populations in milk. Increased losses of secretory epithelial cells into milk could have implications for milk production, and fewer viable immune cells could negatively impact the immunocompetence of dairy cows under heat stress

    De novo fatty acid synthesis and NADPH generation in equine adipose and liver tissue

    No full text
    The lipogenic capacities of equine liver and adipose tissue explants were investigated in vitro. Preference for glucose or acetate as the primary carbon source for de novo fatty acid synthesis was determined using (14)C labeled substrates. Additional aims included determining the relative contribution of NADPH generating pathways to reducing equivalent generation and comparing the lipogenic activity of two adipose depots, mesenteric and subcutaneous harvested from the crest region of the neck. Mesenteric adipose tissue had greater lipogenic activity than subcutaneous adipose tissue, and liver tissue showed minimal (14)C incorporation into fatty acids, indicating a low hepatic lipogenic capacity. Acetate was found to be the primary carbon source for fatty acid synthesis due to both the appearance of the (14)C label in the lipid fraction and the low activity of ATP-citrate lyase. Finally, the pentose phosphate and isocitrate dehydrogenase enzymes contributed to NADPH production in equine adipose tissue

    Effects of the insulin sensitizing drug, pioglitazone, and lipopolysaccharide administration on markers of systemic inflammation and clinical parameters in horses

    No full text
    Equine metabolic syndrome (EMS) is a condition of obese horses characterized by insulin resistance, systemic inflammation, and an increased risk of laminitis. The pathogenesis of EMS is thought, in part, to be due to inflammatory proteins produced by adipose tissue. Reducing inflammation may decrease the incidence of laminitis in horses with EMS. Pioglitazone hydrochloride, a thiazolidinedione, has efficacy to reduce obesity associated inflammation in humans. Eight normal, adult, horses were administered 1mg/kg pioglitazone for 14 days, and eight horses served as controls. Physical examination and hematologic variables, transcript abundance of pro-inflammatory cytokines in skeletal muscle and adipose tissue, and circulating concentrations of the acute phase protein, serum amyloid A and pro-inflammatory cytokine, TNF-α were assessed prior to, and following, an LPS infusion (35 ng/kg). The objective was to determine if pre-treatment with pioglitazone would mitigate the development of inflammation and associated clinical markers of inflammation following LPS administration. Lipopolysaccharide administration induced systemic inflammation, as assessed by clinical and hematological aberrations, increased TNF-α, SAA and adipose tissue IL-6 mRNA abundance, however no mitigating effects of pioglitazone were detected. A longer treatment period or higher dose might be indicated for future experiments
    corecore