24 research outputs found

    Site selective adsorption of the spin crossover complex Fe(phen)\u3csub\u3e2\u3c/sub\u3e(NCS)\u3csub\u3e2\u3c/sub\u3e on Au(111)

    Get PDF
    The iron(II) spin crossover complex Fe(1,10-phenanthroline)2(NCS)2, dubbed Fe-phen, has been studied with scanning tunneling microscopy, after adsorption on the \u27herringbone\u27 reconstructed surface of Au(111) for sub-monolayer coverages. The Fe-phen molecules attach, through their NCS-groups, to the Au atoms of the fcc domains of the reconstructed surface only, thereby lifting the herringbone reconstruction. The molecules stack to form 1D chains, which run along the Au[110] directions. Neighboring Fe-phen molecules are separated by approximately 2.65 nm, corresponding to 9 atomic spacings in this direction. The molecular axis, defined by the two phenanthroline groups, is aligned perpendicular to the chain axis, along the Au [221] direction, thereby bridging over 5 atomic spacings, in this direction. Experimental evidence suggests that the molecular spins are locked in a mixed state in the sub-monolayer regime at temperatures between 100 K and 300 K

    The chromium site in doped glassy lithium tetraborate

    Get PDF
    Using extended X-ray absorption fine structure (EXAFS) spectroscopy, we find that Cr substitutes primarily in the Liþ site as a dopant in lithium tetraborate Li2B4O7 glasses, in this case 98.4Li2B4O7e1.6Cr2O3 or nominally Li1.98Cr0.025B4O7. This strong preference for a single site is nonetheless accompanied by site distortions and some site disorder, helping explain the optical properties of chromium doped Li2B4O7 glasses. The resulting O coordination shell has a contraction of the Cr-O bond lengths as compared to the Li-O bond lengths. There is also an increase in the O coordination number

    The chromium site in doped glassy lithium tetraborate

    Get PDF
    Using extended X-ray absorption fine structure (EXAFS) spectroscopy, we find that Cr substitutes primarily in the Liþ site as a dopant in lithium tetraborate Li2B4O7 glasses, in this case 98.4Li2B4O7e1.6Cr2O3 or nominally Li1.98Cr0.025B4O7. This strong preference for a single site is nonetheless accompanied by site distortions and some site disorder, helping explain the optical properties of chromium doped Li2B4O7 glasses. The resulting O coordination shell has a contraction of the Cr-O bond lengths as compared to the Li-O bond lengths. There is also an increase in the O coordination number

    Magnetism of new metastable cobalt-nitride compounds

    Get PDF
    The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic- structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co-N compounds with favorable magnetic properties including hexagonal Co3N nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ/m3 or 10.1 Mergs/cm3). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies

    Magnetism of new metastable cobalt-nitride compounds

    Get PDF
    The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co–N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic-structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co–N compounds with favorable magnetic properties including hexagonal Co3N nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ m−3 or 10.1 Mergs per cm3). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies

    Low-dimensional Materials for Organic Electronic Applications

    Get PDF
    This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties. First, a H-bonded organic ferroelectric, the 3-Hydroxyphenalenone, is studied on two noble metal substrates. It is demonstrated how a variety of different assemblies including 1D chains, p-p stacked structures and chiral network can be fabricated using the substrate as a growth parameter. Especially 1D chains are interesting as they still exhibit the structural motif that is the origin of their ferroelectric behavior in bulk, namely the coupling between the H-bonds and the molecular p electron system. Second, the self-assembly of Fe(II) spin crossover complex is studied on Au(111) substrate. This organic complex can be reversibly switched between paramagnetic high-spin (S=2) and diamagnetic low-spin state (S=0) in the bulk. The magnetic and electronic properties of this complex were found to be drastically influenced by the substrate. Interestingly, the reversible spin-state transition is suppressed in the interfacial molecules, likely due to a conformational change these molecules experience when in contact with the substrate. Third, the 2D boron containing semiconductors were synthesized by covalent linking of boron based precursor molecules. Two molecules, bis-BN cyclohexane and m-carborane- 9-thiol are studied on Ir(111) and Au(111) substrates, respectively. In the first case, the covalent bonding between de-hydrogenated bis-BN cyclohexane rings led to the formation of a new 2D B, C, and N containing material. This material is isostructural to graphene and h-BN, but with the useful band gap of 0.9 eV. In the second case, the m-carborane monolayer films were synthesized on Au(111). A microscopic study of the effect of the electroninduced crosslinking of the carborane cages and the resulting change in the HOMO-LUMO gap is presented. The significance of this study is in the relation it establishes between the structure and properties of these molecular systems on metal substrates through basic surface science, which will potentially enable multi-functional organic electronics applications. Advisor: Axel Ender

    Low-dimensional materials for organic electronic applications

    No full text
    This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties

    Chiral surface networks of 3-HPLN : a molecular analog of rounded triangle assembly

    No full text
    The self-assembly of 3-hydroxyphenalenone (3-HPLN) on the Ag(111) surface has been studied with scanning tunnelingmicroscopyand fi rst-principlescomputations.Theprochiral3-HPLNmoleculeformszipper-likechains when deposited on the Ag(111) surface, representing a 2D analog of their arrangement in bulk crystals. Upon annealing, local chiral trimer motifs form and serve as building blocks in extended 2D supramolecular networks not observed in 3D crystals. The extended network is porous and is held together via weak van der Waals interactions. The dispersion forces between trimers suggest that their handedness is overall racemic, but the asymmetric packing of 3-HPLN trimers around the pores leads to a chiral network. The offset alignment of neighboring 3-HPLN molecules in the unit cell resembles the offset between neighboring particles that are seen in the most ef fi cient packings of rounded triangles. Computations illustrate that charge is transferred from the Ag(111) surface to the lowest unoccupied orbital of 3-HPLN, and a number of networks (including a honeycomb, as well as an alternative close-packed arrangement) are investigated

    Magnetism of new metastable cobalt-nitride compounds

    Get PDF
    The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic- structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co-N compounds with favorable magnetic properties including hexagonal Co3N nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ/m3 or 10.1 Mergs/cm3). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies
    corecore