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Abstract 

The search for new magnetic materials with high magnetization and magnetocrystalline 
anisotropy is important for a wide range of applications including information and energy 
processing. There is only a limited number of naturally occurring magnetic compounds that 
are suitable. This situation stimulates an exploration of new phases that occur far from 
thermal-equilibrium conditions, but their stabilization is generally inhibited due to high 
positive formation energies. Here a nanocluster-deposition method has enabled the discovery 
of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was 
assisted by computational methods including adaptive-genetic-algorithm and electronic-
structure calculations. Conventional wisdom is that the interstitial or substitutional solubility 
of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not 
produce materials with significant magnetization and anisotropy. By contrast, our experiments 
identify new Co-N compounds with favorable magnetic properties including hexagonal Co3N 
nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an 
appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ/m3 or 10.1 Mergs/cm3). 
This research provides a pathway for uncovering new magnetic compounds with 
computational efficiency beyond the existing materials database, which is significant for 
future technologies.  
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1. Introduction 

New materials discovery has governed the development of science and technology for 

decades.1-4 Many of the most important magnetic materials were discovered through 

enlightened solid-state chemistry and intermetallic-compound research.5-7 This approach often 

has been focused on Fe or Co-based compounds, since Fe and/or Co are required to achieve 

high saturation magnetic polarization Js (Js = 4πMs, where Ms is the saturation magnetization) 

and Curie temperature (Tc). Magnetic anisotropy is another key intrinsic property, essential to 

develop coercivity (Bc = µ0Hc) in magnetic materials or thermal stability in nanomagnets. 

Magnetocrystalline anisotropy is a combined effect of spin-orbit coupling and crystal-field 

interactions and often requires rare-earth or expensive elements.8 In contrast to the earlier 

methods, there are three relatively unexplored approaches to the problem of new magnetic-

materials discovery. These include: (i) production of new structures by incorporation of gases 

such as nitrogen, (ii) the use of non-equilibrium methods to generate novel structures, and (iii) 

the use of high-speed computational methods stimulated by the materials genome initiative. In 

this research, we combine uniquely all of these approaches to achieve promising magnetic 

properties in Co-N compounds. 

 Considering the above-mentioned three approaches separately, it has been shown that 

the interstitial modification of N can improve the Ms, K1, and Tc values of Fe-rich magnetic 

materials such as Fe16N2 and Sm2Fe17N3.
9,10 Some stoichiometric Co-N interstitial compounds 

have been reported such as Co3N and Co2N, but these exhibit poor magnetic properties.11-13 

An example is the hexagonal compound Co3N, which crystallizes in the well-known ε-Fe3N 

structure (space group P6322) but exhibits a low magnetization (about 31 kA/m or emu/cm3) 

at 5K.11 The second approach, that of non-equilibrium processing, has focused on techniques 

such as sputtering and rapid quenching from the melt. These methods have produced 

interesting examples of magnetic compounds such as Co3Si by sputtering14 and of TbCu7 and 
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ThMn12-type structures by rapid quenching.15-17 Finally, theoretical and computational tools 

for new materials discovery have seen significant development in recent years. First-principle 

calculations and machine-learning techniques show much potential for high-throughput 

computational materials design. Ideally, this approach can accelerate the discovery of new 

materials with high efficieny and speed by guiding synthesis methods on the composition and 

structure of new compounds. Several reviews of advances in this rapidly developing field 

have appeared recently.18-23  

 Transition-metal nitrides form a rich class of compounds with diverse electronic 

structure and properties. They are relatively unexplored compounds compared to oxides, yet 

have properties ranging from metallic to semiconducting and with potential applications as 

ceramics, magnets, catalysis, and others.24-28 In this communication, we investigate new Co-N 

compounds by combining experimental and computational methods as follows. First, non-

equilibrium cluster deposition14 is used to produce a set of metastable Co-N compounds in the 

form of nanoparticles and the structure and magnetic properties of the Co3N nanoparticles are 

determined experimentally using various complementary characterization techniques. 

Nanoparticle syntheses have shown great potential recently for the development of new Co-

rich magnetic compounds with high magnetocrystalline anisotropy and magnetization.14, 29-32 

We have focused our search on the Co3N stoichiometry in this study, because earlier 

experimental observations on Co-N systems suggest the formation of the cubic structure for 

nitrogen contents ≤  20 at. % and higher nitrogen contents ≥  30 at. % substantially 

deteriorates the magnetic properties; for example, Co2N and CoN are Pauli paramagnets.11-13 

Second, an adaptive genetic algorithm (AGA) is used to assist the determination of the crystal 

strucrure for the new nitride compounds. This method predicts the crystal structures of 

unknown phases relatively rapidly and does not require any assumptions on the Bravais lattice, 

atom basis, or unit-cell dimensions.33 Third, spin-polarized density-functional theory (DFT) is 
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applied to new structures in order to calculate their electronic structure and understand their 

magnetic properties.  

2. Experimental methods 

Our nanoparticle experiments were carried out by cluster deposition using an inert-gas 

condensation.14 In this method, which produces highly monodisperse metal and alloy 

nanoparticles, an atomic Co vapor produced using direct-current plasma sputtering is 

condensed in a cooled inert-gas atmosphere to form nanoparticles in the gas-aggregation 

chamber (for more details, see the experimental section in the Supporting Information S1). To 

form Co3N nanoparticles, we have fed nitrogen gas (N2) into the gas-aggregation chamber. 

Stoichiometry and crystal structure were controlled by nitrogen flow rate, deposition pressure, 

and growth rate. The nanoparticles were then extracted from the gas-aggregation chamber to 

another chamber for room-temperature deposition on substrates. Dense nanoparticle films 

were deposited on Si (111) to measure x-ray diffraction (XRD) using a Cu Kα wavelength of 

about 1.54 Å, neutron diffraction, binding energy of core-level electrons using x-ray 

photoelectron spectroscopy (XPS), and magnetic properties using superconducting quantum 

interference device (SQUID) and physical property measurement (PPMS) system. Carbon-

coated Cu grids with low nanoparticle coverage were used for transmission-electron 

microscopy (TEM) measurements. 

 

3. Results and discussion 

Figure 1A shows the experimental XRD patterns for the nanoparticle samples prepared at 

different N2 flow rates in standard cubic centimeters per minute (SCCM). Without the 

addition of N2 into the gas-aggregation chamber, the sputtered Co atoms aggregate to form 

pure Co nanoparticles, which exhibit a mixture of hcp and fcc Co phases as indexed in black 

and green fonts, respectively, in the XRD pattern (black curve in Fig. 1A). At N2 flow rates of 
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about 25 SCCM (red curve) and 30 SCCM (blue curve), the XRD patterns of the 

nanoparticles are different from that of the Co nanoparticles (black curve) and existing 

equilibrium phases in the Co-N binary phase diagram34 and indicate the formation of new 

structures. Higher nitrogen flow-rates cause the nanoparticles to crystallize in zincblende-type 

cubic CoN, as exemplified by the XRD pattern for 100 sccm (brown curve in Fig. 1A). 

Crystal structures of the new cobalt nitrides were searched using the adaptive genetic 

algorithm 28,33 which was developed based on real-space cut-and-paste operations to generate 

descendent structures.35 The searches were carried out at zero pressure and zero temperature 

with energy as the selection criteria to optimize the candidate structures and in addition, we 

also have used density functional theory (DFT) in order  to calculate the magnetization of the 

predicted compounds (see the Supporting information S1 for the details of DFT calculations). 

The calculated Co3N structures along with their formation energy (∆H) at standard or 

equilibrium conditions and saturation magnetization (Ms) are shown in Table 1 of the 

Supporting Information S1. Out of several calculated structures, XRD patterns of the 

nanoparticles prepared at 25 SCCM (red curve) and 30 SCCM (blue curve) can be indexed 

with the new hexagonal (space group: P63/mmc, prototype: CdMg3) and rhombohedral (space 

group: R3̄c) Co3N structures, respectively. XPS results also show the Co/N atomic ratio for 

the hexagonal and rhombohedral nanoparticles as 3.3 and 2.8, respectively (discussed later) 

and the corresponding stoichiometric values will be used while discussing the hexagonal and 

rhombohedral nanoparticles.   While the rhombohedral-type Co2.8N nanoparticles are single-

phase, the XRD pattern of the substituted hexagonal Co3.3N nanoparticles exhibits a low-

intensity (111) peak corresponding to fcc Co. 

 We also have performed XRD profile analysis for the nanoparticles using the Rietveld 

refinement method as shown in Fig. 1B. The experimental XRD patterns of the nanoparticle 

samples prepared at the nitrogen flow rates of 25 and 30 SCCM are in good agreement with 

the simulated XRD patterns for the hexagonal and rhombohedral-type Co3N structures, 
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respectively. Rietveld refinement yields a volume fraction of 3% fcc Co, as well as lattice 

parameters of a = 5.042 Å and c = 4.090 Å (hexagonal phase) and a = 4.611 Å and c = 13.062 

Å (rhombohedral). 

  Note that the rhombohedral structure is an interstitial type and hexagonal Co3N phase 

is a substitutional compound. Figure 1C-D shows the corresponding unit cells. In the 

rhombohedral structure, the nitrogen atoms forming a sublattice by occupying some of the 

octahedral interstitial sites in the hcp-Co host lattice. This octahedral interstitial occupancy is 

the usual situation for gases in dense-packed metals,36 and the corresponding theoretical 

enthalpy of formation, +71.0 meV per atom (Table 1 in the Supporting Information S1), is 

moderately high and in a similar range of the calculated formation energy of the known Fe3N-

type hexagonal structure (+72.0 meV/atom). The substituted hexagonal compound crystallizes 

in the CdMg3-type hexagonal structure. As in the rhombohedral structure, the nitrogen atoms 

form an ordered sublattice, corresponding to the Cd atoms in the prototype, but the structure is 

that of hcp cobalt where one fourth of the Co atoms are replaced by nitrogen. This substitution 

is very unfavorable at thermal equilibrium, with a calculated formation enthalpy of +964.1 

meV/atom (Table 1 in the Supporting Information S1). 

 As compared to hcp Co and fcc Co, the rhombohedral Co2.8N nanoparticles have 

several distinct and intense x-ray diffraction peaks at 2θ = 39.12°, 58.32°, 70.89°, 77.79°, 

85.23° and 87.58°, corresponding to (110), (116), (030), (119), (306), and (223) reflections, 

respectively (blue curve in Fig. 1A). On the other hand, it is important during the structural 

determination of Co3.3N nanoparticles using XRD to properly distinguish between the hcp Co 

and substituted CdMg3-type structure, which are closely related and have similar XRD 

patterns. The main difference is the larger unit cell, which means that hcp (h k l) peaks 

correspond to CdMg3 (2h 2k l) peaks. A few distinct XRD peaks at lower angles from (100), 

(101), and (110) reflections are expected for the CdMg3-type structure, but the intensities of 

(100) and (110) peaks are small as compared to the intense XRD peaks such as (200), (002), 
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and (201) and the (101) peak is covered by the substrate peak. However, a weak intensity 

peak corresponding to the (100) reflection of the CdMg3-type structure is visible in the 

experimental XRD pattern (red curve in Fig. 1A and B). Note that the intensity ratio between 

the (100) and (200) reflections from the experimental XRD pattern is I(100)/I(200) ≈ 0.58, 

comparable with the standard theoretical intensity ratio I(100)/I(200) = 0.37 for Co3.3N 

nanoparticles with the CdMg3-type structure. In support to this result, the analysis of the 

intensity of the (002) XRD peak and electron diffraction results also indicates that the 

hexagonal phase is CdMg3, not the crystallographically very similar hcp Co; in addition, x-ray 

photoelectron spectroscopy (XPS) measurements also show that the stoichiometry is close to 

Co3N (see below)  

 Note that the (002) peak often has been observed to be the most intense XRD peak for 

hcp Co nanoparticles,37-41 and this is also true for the pure Co nanoparticles reported in the 

present study (black curve in Fig. 1A). In contrast, the most intense diffraction peak in the 

XRD pattern of the hexagonal Co3.3N nanoparticles is (201) as expected for the CdMg3-type 

structure.   

 For electron-diffraction measurements, the hexagonal Co3.3N sample with significant 

amount of particles were deposited on a carbon-coated copper grid and immediately capped 

with a carbon layer of about 1 nm thickness. Figure 2A shows the transmission electron 

microscope (TEM) image of the hexagonal Co3.3N nanoparticles and the corresponding 

selected area diffraction (SAED) pattern is compared with the simulated electron diffraction 

pattern of the CdMg3-type structure using a computer program PCED in Fig. 2B.42 The red-

vertical lines marked in Fig. 2B correspond to the simulated intensities of various reflections. 

As shown in Fig. 2B, the experimental SAED pattern shows good aggrement with the 

simulated diffraction rings corresponding to the CdMg3-type hexagonal structure.  

 As shown in Fig. 2B, the most intense diffraction pattern is broad due to the 

combination of (201), (002), and (200) reflections, whose interplanar spacings (dhkl ) are 
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1.905, 2.033, and 2.151 Å, respectively, and close to each other. Outside of these strong 

reflections, weak diffraction spots corresponding to (200) reflection of the fcc Co are also 

seen as indicated by an arrow in Fig. 2B. However, the diffraction spots corresponding to the 

distinct (110), (101), and (100) reflections at higher dhkl values for the CdMg3-type structure 

are not visible in Fig. 2B due to their low intensities. 

 As shown in Fig. 2C and 2D, we also measured SAED pattern at higher magnification 

in order to focus on the diffraction pattern with larger dhkl values. Several diffractions spots 

corresponding to the (101) reflection are clearly seen as marked by dotted circles in Fig. 2C 

and 2D, and these diffraction spots match with the (101) reflection from the simulated 

electron diffraction pattern of the CdMg3-type structure as shown in Fig. 2D. We also 

confirmed that the diffuse diffraction ring observed between the most intense diffraction rings 

and (101) reflection in Fig. 2C and D is due to the carbon cap layer by measuring the SAED 

pattern for the carbon layer. If the intensity of the incident electron beam is decreased by 

adjusting the beam-stopper, a few diffraction spots corresponding to (100) reflection of the 

CdMg3-type hexagonal Co3N is also clearly seen (Fig. S1B in the Supporting Information S1). 

The observation of (100) and (101) Bragg reflections is a clear evidence of the new CdMg3-

type phase that distinguishes it from the structurally related hcp Co. 

 Note that the dhkl values of the indexed (100) and (101) reflections for the hexagonal 

nanoparticles using XRD and/or SAED patterns do not match with those standard values of 

the (hkl) reflections from fcc Co, hcp Co, CoO, cubic nitrides such as CoN and Co4N or 

distorted hcp Co3N, but they show good agreement with the (hkl) reflections of the CdMg3-

type structure. In the case of distorted hcp Co3N, a sizeable increase of lattice parameters (a ≈ 

2.66 Å and c ≈ 4.31 Å) has been observed as compared to those of hcp Co (a ≈ 2.51 Å and c ≈ 

4.07 Å), leading to a significant shift of x-ray diffraction peaks of the hcp Co3N towards 
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lower 2θ values by about 1-2°.43 Therefore, the positions of XRD peaks of the CdMg3-type 

hexagonal nanoparticles are significantly different than those of the distorted hcp Co3N.   

 The hexagonal and rhombohedral nanoparticles were also deposited on carbon-coated 

Cu grids with low coverage densities. This is important to avoid the agglommeration of 

nanoparticles, which helps to measure more precisely their size, size-distribution, and shape. 

Figures 3A and 3B show the TEM images of the substituted hexagonal and interstitial 

rhombohedral nanoparticles, respectively. The corresponding particle-size histograms reveal 

narrow size-distributions with an average particle size d = 16.4 nm and a standard deviation of 

σ/d ≈ 0.07 for the hexagonal Co3.3N nanoparticles (left inset of Fig. 3A) and d = 14.6 nm and 

σ/d ≈ 0.20 for the rhombohedral Co2.8N nanoparticles (left inset of Fig. 3B).  Note that the 

Co3.3N nanoparticles of Fig. 3A have facets typical of hexagonal crystal structures, whereas 

those in Fig. 3B are nearly rhombohedral. High-resolution TEM images of the hexagonal and 

rhombohedral nanoparticles show good crystalline nature of the nanoparticles as shown in the 

right insets in Fig. 3A and Fig. 3B, respectively. 

 In agreement with the x-ray and electron-diffraction studies, XPS results also show a 

stoichiometry close to Co3N for the hexagonal Co3N nanoparticles. For XPS analysis, we 

have used the areas of Co 2p3/2 (Fig. 4A) and N 1s peaks (Fig. 4B) as shown in the 

corresponding core-level XPS spectrum of the hexagonal Co3N nanoparticles and determined 

a Co/N ratio of about 3.3. Similarly, the rhombohedral Co3N nanoparticles show a Co/N 

atomic ratio of about 2.8. A detailed XPS analysis confirms the existence of chemical bonds 

between cobalt and nitrogen in both hexagonal Co3.3N and rhombohedral Co2.8N nanoparticles 

and more details on the XPS measurements, results, and analysis are described in the 

Supporting Information S2. 

 Our structural studies show the formation of hexagonal (CdMg3-type) and 

rhombohedral nanoparticles. When nanoparticle sizes are on the order of tens of nanometers, 
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it is often found that the nanoparticles adopt the same structures as bulk materials.44  Thus, our 

Co3N nanoparticles with average sizes of about 14.6 and 16.4 nm are larger enough to be 

representative of bulk metastable structures. The enthalpy difference of 964.1 meV per atom 

for the hexagonal structure at equilibrium or standard conditions is large and unusual. Since 

the high standard formation energy only predicts the phase stability at standard conditions,  it 

does not rule out the formation of Co3N during the initial stage of the growth in the reactive 

plasma. It is worth noting that metal nitrides such as MoN2, Cu3N, and Na3N with high 

formation energy has been been fabricated using  non-equilibrium synthesis methods. 45,46,47 

 Note that the calculations for energy formation of the Co3N phases are made at 

standard conditions using hcp Co and N2 as references by following ∆H (Co3N) = [E(Co3N) – 

0.5E(N2) – 3E(Co)]/4,  and and thus the energy required to dissociate N2 is expected to be 

high.48 However, our approach uses the non-equilibrium inert-gas- plasma condensation-type 

cluster-deposition process for the growth the cobalt nitride nanoparticles, and reactive 

nitrogen precursor having atomic nitrogen is generaly produced by cracking of N2 molecules 

in the plasma during the reactive sputtering process,24 i.e nitrogen atoms are readily avaliable 

in the plasma to react with Co nanoparticles for forming the Co3N phases, and this non-

equilibrium condition subsequently help to overcome the high formation energy.24 After the 

formation, the nitrogen may prefer to leave the nanoparticles but persumably has no time to 

diffuse to the surface before cooling to room temperature, and thus the CdMg3-type Co3.3N 

nanoparticles have been observed to be stable while they are brought to room temperature. 

Similar results also have been observed in other nitride systems. For example, MoN2 with 

R3m structure has shown a high positive formation energy of 819 meV/atom using Mo + N2 = 

MoN2.
45 However, this compound has been been produced at high pressure of about 3.5 GPa 

and annealing at 753 K for 20 hrs.46 Similarly, the formation energies of Na3N (+210 

meV/atom) and Cu3N (+260 meV/atom) are high and possitive,24 but these phases have been 

grown using reactive plasma synthesis and sputtering, respectively. 47 Like Co3.3N, MoN2, 
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Cu3N and Na3N also become stable while they were brought to room temperature and 

atmospheric pressure.  

 The calculated saturation magnetizations of bulk rhombohedral and hexagonal Co3N 

structures using density functional theory (DFT) are 662 kA/m  (or Js = 8.3 T) and 1198 kA/m 

(or Js = 1.51 T), respectively (Table 1 in the Supporting Information S1).  The latter value is 

remarkable and is in the range of values measured for the rare-earth permanent-magnet 

materials such as SmCo5 (1.01 T), Sm2Co17 (1.2 T), and YCo5 (1.06 T)49 and substantially 

higher than that of the equilibrium Co-N compounds.11-13 From the corresponding densities of 

states, we see that the rhombohedral compound is a weak ferromagnet (Fig. 5A), with holes in 

both the ↑ and ↓ bands, whereas the hexagonal compound is a strong ferromagnet, with 

essentially a fully occupied ↑ band (Fig. 5B).  Figure 5C shows the hysteresis loops of the 

substituted CdMg3-type hexagonal nanoparticles at 10 K and at room temperature. There is no 

significant difference between the saturation magnetization values at the two temperatures, 

which indicates a high Curie temperature, much above room temperature. The experimental 

saturation magnetization is 1014 kA/m at 10 K, which corresponds to a saturation magnetic 

polarization of Js = 1.28 T (12.8 kG) and comparable with the theoretical value (Ms = 1198 

kA/m or 1198 emu/cm3). Our DFT calculations are carried out for perfect single crystals, but 

the experimental samples might have structural features such as subtle compositional and 

surface inhomogeneities or other defects. This could be a possible reason for the slight 

difference between the experimental and theoretical magnetizations. 

The temperature dependence of the nanoparticle magnetization for the CdMg3-type 

hexagonal structure is shown in Fig. 5D. There is a pronounced magnetization minimum near 

600 K, which we interpret as a Curie transition immediately followed by the decomposition of 

the substitutional phase into N2 and elemental Co above 615 K. Such decompositions are very 

common in Co- and Fe-based nitrides 7,12 and, in the present system, supported by XRD and 

XPS results (Supporting Information S3). Our results indicate that the hexagonal Co3.3N phase 
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is stable up to at least 600 K (~ 327 °C) and  this is important  because permanent-magnet 

materials are needed for use above room temperature, for example up to 180 °C in high-

performance motors.  

To study the magnetic transition and phase stability of the hexagonal Co3.3N 

nanoparticles as discussed above, we carried out neutron diffraction on a thin-film sample 

composed of easy-axis-aligned hexagonal Co3.3N nanoparticles. The nanoparticles were 

aligned by applying a magnetic field Bx = µ0Hx = 0.5 T or 5 kG parallel to the substrate during 

the deposition i.e the field was applied along the x-direction with respect to the substrate  (See 

the Supporting Information S4 for details). Figure 6A compares the out-of-plane (z-axis) 

XRD patterns of the unaligned (isotropic) and aligned nanoparticles. It is clearly seen that the 

intensity of (002) peak significantly decreases and that of the (200) peak increases in the XRD 

pattern of the aligned nanoparticles as compared to those corresponding intensities in the 

XRD pattern of the isotropic nanoparticles.  This result indicates that the c-axis of the 

hexagonal Co3N crystal is the easy direction for magnetization and aligned along the direction 

of the magnetic field Bx, which is applied along the substrate plane during the deposition.  A 

pole-figure analysis of the (002) peak also shows that the {002} is aligned predominantly 

along the direction of Bx in the film plane (See the Supporting Information S4 for details). 

Generally neutron diffraction consists of nuclear and magnetic contributions. The 

nuclear diffraction measures the ordering of atoms; it is more sensitive to N than to Co, 

because the scattering length of N is about 3 times as large as Co.50 On the other hand, the 

magnetic diffraction measures the ordering of magnetic moments. The important result is that 

the temperature dependence of the (002) diffraction intensity show a clear transition between 

500 K and 600 K as shown in Fig. 6B, and this transition appears to be reversible (warming 

followed by cooling). Since neutron diffraction is sensitive to N, our result indicates that the 

structural decomposition of Co3.3N nanoparticles in terms of N loss is minimal up to 600 K. 

The transition observed between 500 and 600 K in Fig. 6B is consistent with the magnetic 

Page 12 of 28Nanoscale



     

13 
 

transition shown by the temperature-dependent magnetization curve (Fig. 5D). Therefore, 

there is a sizable magnetic contribution to the neutron diffraction, which suggests a magnetic 

ordering. The fact that one can observe the magnetic transition in the (002) diffraction 

indicates non-zero magnetic moment perpendicular to the c axis, which could be due to the 

exchange interaction between the partially aligned particles.51 

As shown in the inset of Fig. 6B, the rocking curve of (002) diffraction was measured 

to study the relation between the crystalline direction and the substrate orientation as well as 

to obtain the degree of magnetic alignment from distribution of (002) intensity. The 

crystalline c axis appears to be closely aligned with the substrate plane in which the magnetic 

field was applied during the growth, with a 20-degree FWHM (full width at half maximum) 

angular dispersion.  Rocking scans performed by the 4-circle neutron diffractometer probes 

the distribution of magnetic moment and (002) orientation and the result agrees very well with 

the texture-orientation distribution obtained by the in-plane pole figure using x-ray diffraction 

(Supporting Information S4).   

The hysteresis loops of the hexagonal Co3.3N nanoparticles exhibit substantial 

coercivities of 0.19 T at 300 K and 0.4 T at 10 K (Fig. 5C). These coercivities indicate 

appreciable magnetocrystalline anisotropy associated with the noncubic CdMg3-type crystal 

structure. The anisotropy is further confirmed by measuring the easy- and hard-axis 

magnetization curves for the aligned nanoparticle sample. The hysteresis loops measured at 

10 K along the easy and hard directions for the aligned Co3.3N nanoparticle sample are shown 

in Fig. 6C. The loops show a comparatively high coercivity Bc = 0.42 T  and a high 

remanence ratio Mr/Ms = 0.80 along the easy axis as compared to the values measured along 

the hard axis (Bc = 0.14 T and Mr/Ms = 0.24).  The room-temperature values along the easy- 

and hard- axes are Bc = 0.2 T  and Mr/Ms = 0.76 and Bc = 0.07 T   and Mr/Ms = 0.21, 

respectively (not shown here). Experimentally, we have estimated the anisotropy constant K1 

from the point where easy- and hard-axis magnetization curves intersect for the aligned 
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nanoparticles. The intersection yields an anisotropy field Ba = µ0Ha = 2.0 T at 10 K and, based 

on the relation Ba  = 2K1/Ms, an anisotropy of 1.01 MJ/m3 (10.1 Mergs/cm3). 

The magnetic properties and phase stability of the rhombohedral Co2.8N nanoparticles 

are provided in the Supporting Information S5. In brief, the Co2.8N nanoparticles crystallizing 

in the rhombohedral structure also exhibit appreciable K1 = 1.04 MJ/m3 (10 Mergs/cm3)  and 

Ms = 580 kA/m (or Js = 0.73 T).  The underlying anisotropy is also reflected by high 

coercivity, for example Bc = 0.6 T at 10 K. The temperature dependence of the magnetization 

indicates a Curie temperature in the vicinity of 450 K. Nanoparticles of this phase show a 

decomposition above 605 K.  

The magnetic anisotropy values for the nanoparticles of the hexagonal Co3.3N (K1 = 

1.01 MJ/m3) and rhombohedral Co2.8N (K1 = 1.04 MJ/m3) are higher than the anisotropy of 

bulk hcp Co (0.65 MJ/m3)48 and Co nanoparticles reported in this study (K1 = 0.55 MJ/m3, not 

shown here).  Note that Co nanoparticles of much smaller sizes of less than 0.68 nm size (15 

atoms) deposited on Pt substrate have shown enhanced magnetic anisotropies.52  These 

particle sizes are much smaller than the critical super-paramagnetic size (Dsp), a quantity 

related to the thermal stability of nanomagnets, which can be estimated  using K1Vnp = 25 

kBT.49 Vnp and kB are the volume of the nanoparticles and Boltzmann constant, respectively. 

Thus, the smaller Co nanoparticles are not thermally stable and expected to show only 

superparamagnetic behavior at room temperature, which is not desirable for energy and data 

storage applications. On the other hand, Co nanoparticles with larger particle sizes > 1.0 nm 

only exhibited anisotropy values similar to that of bulk Co.52-54 For example, hcp Co 

nanoparticles with an average size of 3 nm exhibit  K1 = 0.49 MJ/m3, similar to that of bulk 

Co and are superparamagnetic with a blocking temperature of  20 K.54 

The enhancement of K1 by the introduction of N atoms in the new Co3N compounds 

fundementally must be understood at the level of the spin-polarized electronic structure. From 

the viewpoint of crystal structures, the nitrogen in the newly synthesized compounds can be 
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considered as a substitutional atom  in the case of the hexagonal phase and an interstial atom 

in the case of the rhombohedral phase. It is possible that the N atoms strengthen the spin-orbit 

coupling of the Co and subsequently increase the magnetic anisotropy energy. By considering 

the high magnetic anisotropies, the average particle sizes of the nanoparticles of 

rhombohedral Co2.8N (14.6 nm) and hexagonal Co3.3N (16.4 nm) are expected to be larger 

than the critical super-paramagnetic size (Dsp). For example, we have estimated Dsp = 5.9 nm 

at room temperature for the hexagonal Co3N nanoparticles.  

4. Conclusions 

We have used a combined experimental and computaional approach to investigate how 

interstitial and substitutional modification of Co with nitrogen can create new magnetic 

structures with noteworthy properties. The large difference in formation enthalpy is overcome 

by the non-equilibrium nanoparticle synthesis, and a high saturation magnetic polarization 

and an appreciable magnetic anisotropy are found for the CdMg3-ordered Co3.3N 

nanoparticles. The anisotropy of the hexagonal Co3.3N nanoparticles is in the range of several 

rare-earth-free permanent-magnet materials that have shown high coercivities and room-

temperature energy products upon nanostructuring.29,55-57 Therefore, they can have potential 

uses in microelectromechanical systems (MEMS) and also can be used to create future rare-

earth-free permanent magnets, if scale-up methods are developed. On the basis of K1 = 1.01 

MJ/m3 and Js = 1.28 T for the hexagonal Co3N, an energy product as high as about 318 kJ/m3 

(≈ 40 MGOe) might be obtained in principle by appropriate nanostructuring and compaction 

of these nanoparticles. From the critical materials viewpoint, these new structures do not 

contain any scarce rare-earth or other expensive elements. The combined experimental and 

computational approach employed here is not limited to Co-N systems and can be extended to 

discover new phases in other material systems. A typical example is the family of Heusler 

alloys in which more than about 90% of the compounds are metastable.1 The new metastable 
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structures may be useful for future technological applications in areas such as magnetism and 

catalysis, and this work provides a strategy to accelerate the discovery of new phases for 

energy, data storage, and spintronics applications. 
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Fig. 1 XRD patterns: (A) The experimental patterns measured using Cu Kα wavelength of 
about 1.54 Å for the nanoparticles prepared at different N2 flow rates:  Co (0 SCCM), 
hexagonal Co3.3N (25 SCCM), rhombohedral Co2.8N (30 SCCM), and cubic CoN (100 
SCCM). (B) The experimental patterns of the hexagonal (red) and rhombohedral (blue) 
nanoparticles are fitted with the corresponding structures using Rietveld analysis (black 
curve). New Co3N structures: (C) Rhombohedral and (D) CdMg3-type hexagonal. Brown and 
green spheres represent Co and N atoms, respectively.  
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Fig. 2 Electron microscopy results of the hexagonal Co3.3N nanoparticles. (A) TEM image. 
(B) The experimental selected area electron-diffraction pattern (SAED) is compared with the 
simulated electron-diffraction pattern of the CdMg3-type structure. (C) SAED pattern at 
higher magnification, and (D) its comparison with the simulated electron diffraction pattern 
for the CdMg3-type structure, whereas the diffraction spots corresponding to the (101) 
reflection are marked by dotted circles. The red-vertical lines in (B) and (D) correspond to the 
intensity of the simulated diffraction rings. The dhkl value for the most intense diffraction 
pattern corresponding to the (201) reflection is given as a reference.    
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Fig. 3 TEM images for nanoparticle samples. (A) Hexagonal-type Co3.3N. (B) Rhombohedral-
type Co2.8N. The corresponding particle-size histogram (left) and HRTEM image a single 
particle (left) are shown as insets.  σ  and d are the standard deviation and average particle 
size, respectively. The histograms are fitted with Lorentzian distributions (red curves) 
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Fig. 4  XPS spectra of the core-level electrons for the hexagonal-type Co3.3N nanoparticles. 
(a)  Co 2p and (b) N 1s.  
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Fig. 5 Magnetic properties: (A), (B) Densities of states for bulk rhombohedral and hexagonal 
Co3N structures, respectively. (C) Hysteresis loops measured at 300 K and 10 K for the 
hexagonal Co3N nanoparticles as a function of external magnetic field (B0 = µ0H). (D) 
Magnetization measured as a function of temperature for the hexagonal Co3N nanoparticles in 
a magnetic field of 1.0 dT (1.0 kG) during warming (red curve) and cooling (blue curve). The 
magnetization is normalized with the room-temperature value.  
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Fig. 6 Easy-axis aligned hexagonal-type Co3.3N nanoparticles: (A) Out-of-plane XRD patterns 
measured for the unaligned (red curve) and aligned (blue curve) samples. The XRD patterns 
are indexed to the CdMg3-type hexagonal structure. A weak (111) peak corresponding to the 
fcc Co is also seen. (B) Neutron diffraction intensity of the (002) peak for the aligned 
nanoparticle film shows a transition for both warming (circle) and cooling (square) between 
500 K and 600 K, whereas the red line is a guide to the eye. The inset shows the rocking 
curve of the (002) peak, whereas the red line is the Gaussian fit to the data. (C) Magnetic 
hysteresis loops measured at 10 K along the easy (x) and hard (y) axes. The anisotropy field 
Ba ≡ µ0Ha is indicated by an arrow. 
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