162 research outputs found

    CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients

    Get PDF
    Background: Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome. Methods: Peripheral blood mononuclear cells from septic patients (n = 30), ICU control patients (n = 11) and healthy volunteers (n = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and − 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays. Results: EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival. Conclusions: Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis

    CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients

    Get PDF
    Background: Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome. Methods: Peripheral blood mononuclear cells from septic patients (n = 30), ICU control patients (n = 11) and healthy volunteers (n = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and − 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays. Results: EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival. Conclusions: Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis

    Association Between Serum Carnosinase Concentration and Activity and Renal Function Impairment in a Type-2 Diabetes Cohort

    Get PDF
    Introduction: Genetic studies have identified associations of carnosinase 1 (CN1) polymorphisms with diabetic kidney disease (DKD). However, CN1 levels and activities have not been assessed as diagnostic or prognostic markers of DKD in cohorts of patients with type 2 diabetes (T2D).Methods: We established high-throughput, automated CN1 activity and concentration assays using robotic systems. Using these methods, we determined baseline serum CN1 levels and activity in a T2D cohort with 970 patients with no or only mild renal impairment. The patients were followed for a mean of 1.2 years. Baseline serum CN1 concentration and activity were assessed as predictors of renal function impairment and incident albuminuria during follow up.Results: CN1 concentration was significantly associated with age, gender and estimated glomerular filtration rate (eGFR) at baseline. CN1 activity was significantly associated with glycated hemoglobin A1c (HbA1c) and eGFR. Serum CN1 at baseline was associated with eGFR decline and predicted renal function impairment and incident albuminuria during the follow-up.Discussion: Baseline serum CN1 levels were associated with presence and progression of renal function decline in a cohort of T2D patients. Confirmation in larger cohorts with longer follow-up observation periods will be required to fully establish CN1 as a biomarker of DKD

    CsA, FK506, corticosteroids and rapamycin inhibit TNFα production by cultured PTEC

    Get PDF
    CsA, FK506, corticosteroids and rapamycin inhibit TNFα production by PTEC. In this study we investigated the effect of immunosuppressive drugs on the interleukin-1 alpha (IL-1α) enhanced tumor necrosis factor alpha (TNFα) production by proximal tubular epithelial cells (PTEC). Under basal conditions cultured PTEC produce between 0 to 390 pg/ml/105 cells of TNFα. Upon stimulation with IL-1α an enhancement of TNFα production was seen in each cell line tested, ranging from 230 to 2424 pg/ml/105 cells. The presence of cyclosporin A (CsA) during stimulation with IL-1α inhibited the enhanced TNFα production in a dose dependent fashion, with a maximal inhibition of 90% at a concentration of 250 ng/ml. Inhibition was at the level of mRNA as could be demonstrated by Northern blot analysis. FK506, corticosteroids and rapamycin also inhibited TNFa production in a dose dependent fashion, although not as effectively as CsA. Two corticosteroids were tested for their inhibitory effect on TNFa production. It was found that dexamethasone at a concentration of 10 ng/ml inhibited TNFα production for almost 40%. A 100-fold higher concentration of hydrocortisone was necessary to yield similar inhibition. The effect of rapamycin on the IL-1α enhanced TNFα production differed from the effect of CsA. While CsA induced a maximal inhibition of 90%, rapamycin only induced a maximal inhibition of 37%, and even less inhibition at higher concentrations of the drug. The presence of the various drugs was essential for their inhibitory effect, because removal of the drug from the PTEC by washing immediately resulted in loss of inhibition. Combinations of CsA and FK506 or rapamycin were not additive. However, combinations of rapamycin and FK506 were antagonistic when low concentrations of rapamycin and FK506 were used. Low concentrations of rapamycin with high concentrations of FK506 were synergistic. Since TNFα is likely to be an important mediator in renal allograft rejection, these data suggest that the beneficial effect of immunosuppressive drugs after renal transplantation may partly be due to the effect on TNFα production by renal parenchymal cells

    ABCB5+ mesenchymal stromal cells therapy protects from hypoxia by restoring Ca2+ homeostasis in vitro and in vivo

    Get PDF
    Background: Hypoxia in ischemic disease impairs Ca2+ homeostasis and may promote angiogenesis. The therapeutic efficacy of mesenchymal stromal cells (MSCs) in peripheral arterial occlusive disease is well established, yet its influence on cellular Ca2+ homeostasis remains to be elucidated. We addressed the influence of ATP-binding cassette subfamily B member 5 positive mesenchymal stromal cells (ABCB5+ MSCs) on Ca2+ homeostasis in hypoxic human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. Methods: Hypoxia was induced in HUVECs by Cobalt (II) chloride (CoCl2) or Deferoxamine (DFO). Dynamic changes in the cytosolic- and endoplasmic reticulum (ER) Ca2+ and changes in reactive oxygen species were assessed by appropriate fluorescence-based sensors. Metabolic activity, cell migration, and tube formation were assessed by standard assays. Acute-on-chronic ischemia in Apolipoprotein E knock-out (ApoE−/−) mice was performed by double ligation of the right femoral artery (DFLA). ABCB5+ MSC cells were injected into the ischemic limb. Functional recovery after DFLA and histology of gastrocnemius and aorta were assessed. Results: Hypoxia-induced impairment of cytosolic and ER Ca2+ were restored by ABCB5+ MSCs or their conditioned medium. Similar was found for changes in intracellular ROS production, metabolic activity, migratory ability and tube formation. The restoration was paralleled by an increased expression of the Ca2+ transporter Sarco-/endoplasmic reticulum ATPase 2a (SERCA2a) and the phosphorylation of Phospholamban (PLN). In acute-on-chronic ischemia, ABCB5+ MSCs treated mice showed a higher microvascular density, increased SERCA2a expression and PLN phosphorylation relative to untreated controls. Conclusions: ABCB5+ MSCs therapy can restore cellular Ca2+ homeostasis, which may beneficially affect the angiogenic function of endothelial cells under hypoxia in vitro and in vivo

    Oral Carnosine Supplementation Prevents Vascular Damage in Experimental Diabetic Retinopathy

    Get PDF
    Backgrounds/Aims: Pericyte loss, vasoregression and neuroglial activation are characteristic changes in incipient diabetic retinopathy. In this study, the effect of the antioxidant and antiglycating dipeptide carnosine was studied on the development of experimental diabetic retinopathy. Materials/Methods: STZ-induced diabetic Wistar rats were orally treated with carnosine (1g/kg body weight/day). Retinal vascular damage was assessed by quantitative morphometry. Retinal protein extracts were analyzed for markers of oxidative stress, AGE-formation, activation of the hexosamine pathway and changes in the expression of Ang-2, VEGF and heat shock proteins Hsp27 and HO-1. Glial cell activation was analyzed using Western blot analysis and immunofluorescence of GFAP expression and retinal neuronal damage was histologically examined. Results: Oral carnosine treatment prevented retinal vascular damage after 6 months of experimental hyperglycemia. The protection was not caused by ROS-or AGE-inhibition, but associated with a significant induction of Hsp27 in activated glial cells and normalization of increased Ang-2 levels in diabetic retinas. A significant reduction of photoreceptors in retinas of carnosine treated animals was noted. Conclusion: Oral carnosine treatment protects retinal capillary cells in experimental diabetic retinopathy, independent of its biochemical function. The vasoprotective effect of carnosine might be mediated by the induction of protective Hsp27 in activated glial cells and normalization of hyperglycemia-induced Ang-2. Copyright (C) 2011 S. Karger AG, Basel</p

    Empagliflozin reduces kidney fibrosis and improves kidney function by alternative macrophage activation in rats with 5/6-nephrectomy

    Get PDF
    Background Sodium glucose cotransporter 2 (SGLT2) inhibitors originally developed for the treatment of type 2 diabetes are clinically very effective drugs halting chronic kidney disease progression. The underlying mechanisms are, however, not fully understood. Methods We generated single-cell transcriptomes of kidneys from rats with 5/6 nephrectomy before and after SGLT2 inhibitors treatment by single-cell RNA sequencing. Findings Empagliflozin treatment decreased BUN, creatinine and urinary albumin excretion compared to placebo by 39.8%, 34.1%, and 55%, respectively (p < 0.01 in all cases). Renal interstitial fibrosis and glomerulosclerosis was likewise decreased by 51% and 66.8%; respectively (p < 0.05 in all cases). 14 distinct kidney cell clusters could be identified by scRNA-seq. The polarization of M2 macrophages from state 1 (CD206-CD68- M2 macrophages) to state 5 (CD206+CD68+ M2 macrophages) was the main pro-fibrotic process, as CD206+CD68+ M2 macrophages highly expressed fibrosis-promoting genes and can convert into fibrocytes. Empagliflozin remarkably inhibited the expression of fibrosis-promoting (IFG1 and TREM2) and polarization-associated genes (GPNMB, LGALS3, PRDX5, and CTSB) in CD206+CD68+ M2 macrophages and attenuated inflammatory signals from CD8+ effector T cells. The inhibitory effect of empagliflozin on CD206+CD68+ M2 macrophages polarization was mainly achieved by affecting mitophagy and mTOR pathways. Interpretation We propose that the beneficial effects of empagliflozin on kidney function and morphology in 5/6 nephrectomyiced rats with established CKD are at least partially due to an inhibition of CD206+CD68+ M2 macrophage polarization by targeting mTOR and mitophagy pathways and attenuating inflammatory signals from CD8+ effector T cells. Fundings A full list of funding bodies that contributed to this study can be found in the Acknowledgements section
    • …
    corecore