7,015 research outputs found

    Cosmological Parameter Estimation from SN Ia data: a Model-Independent Approach

    Full text link
    We perform a model independent reconstruction of the cosmic expansion rate based on type Ia supernova data. Using the Union 2.1 data set, we show that the Hubble parameter behaviour allowed by the data without making any hypothesis about cosmological model or underlying gravity theory is consistent with a flat LCDM universe having H_0 = 70.43 +- 0.33 and Omega_m=0.297 +- 0.020, weakly dependent on the choice of initial scatter matrix. This is in closer agreement with the recently released Planck results (H_0 = 67.3 +- 1.2, Omega_m = 0.314 +- 0.020) than other standard analyses based on type Ia supernova data. We argue this might be an indication that, in order to tackle subtle deviations from the standard cosmological model present in type Ia supernova data, it is mandatory to go beyond parametrized approaches

    Climate Impacts of Deforestation/Land-Use Changes in Central South America in the PRECIS Regional Climate Model: Mean Precipitation and Temperature Response to Present and Future Deforestation Scenarios

    Get PDF
    Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961–2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960–2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia

    A square root of the harmonic oscillator

    Get PDF
    Allowing for the inclusion of the parity operator, it is possible to construct an oscillator model whose Hamiltonian admits an EXACT square root, which is different from the conventional approach based on creation and annihilation operators. We outline such a model, the method of solution and some generalizations.Comment: RevTex, 10 pages in preprint form, no figure

    Fingerprinting the magnetic behavior of antiferromagnetic nanostructures using remanent magnetization curves

    Full text link
    Antiferromagnetic (AF) nanostructures from Co3O4, CoO and Cr2O3 were prepared by the nanocasting method and were characterized magnetometrically. The field and temperature dependent magnetization data suggests that the nanostructures consist of a core-shell structure. The core behaves as a regular antiferromagnet and the shell as a two-dimensional diluted antiferromagnet in a field (2d DAFF) as previously shown on Co3O4 nanowires [Benitez et al., Phys. Rev. Lett. 101, 097206 (2008)]. Here we present a more general picture on three different material systems, i.e. Co3O4, CoO and Cr2O3. In particular we consider the thermoremanent (TRM) and the isothermoremanent (IRM) magnetization curves as "fingerprints" in order to identify the irreversible magnetization contribution originating from the shells. The TRM/IRM fingerprints are compared to those of superparamagnetic systems, superspin glasses and 3d DAFFs. We demonstrate that TRM/IRM vs. H plots are generally useful fingerprints to identify irreversible magnetization contributions encountered in particular in nanomagnets.Comment: submitted to PR

    γ\gamma - Z interferometry at a Φ\Phi-factory

    Full text link
    We analyze the possibilities that the proposed Φ\Phi-factories offer to measure γZ\gamma-Z interference. In the unpolarized beam case, we study different signatures in the ρπ\rho \pi channel, taking advantage of the presence of the near-by a1a_1 resonance. We build a C-odd forward-backward asymmetry, estimated to be around 10510^{-5}, and (P-even, T-even) and (P-odd, T-odd) alignments of the ρ\rho, to be seen from the angular distribution of its ππ\pi \pi decay products. With polarized electrons a left-right asymmetry around 2×1042\times 10^{-4} is present in all channels. At leading order this asymmetry is independent of hadronic matrix elements and is sensitive to the Z0ssˉZ^0-s\bar{s} vector coupling. In the ρπ\rho \pi channel, a combined left-right forward-backward asymmetry is considered.Comment: 29 pages + 6 figures. Some changes concerning a1a_1 observables, especially related with possible 2 γ\gamma contribution

    Effects of Gamma Ray Bursts in Earth Biosphere

    Full text link
    We continue former work on the modeling of potential effects of Gamma Ray Bursts on Phanerozoic Earth. We focus on global biospheric effects of ozone depletion and show a first modeling of the spectral reduction of light by NO2 formed in the stratosphere. We also illustrate the current complexities involved in the prediction of how terrestrial ecosystems would respond to this kind of burst. We conclude that more biological field and laboratory data are needed to reach even moderate accuracy in this modelingComment: Accepted for publication in Astrophysics & Space Scienc

    Open and hidden charm in proton-nucleus and heavy-ion collisions

    Full text link
    We review the collectivity and the suppression pattern of charmed mesons - produced in proton-nucleus and nucleus-nucleus collisions at SPS (158 AGeV) and RHIC energies (21 ATeV) - in comparison to dynamical and thermal models. In particular, we examine the charmonium `melting' and the `comover dissociation' scenarios - implemented in a microscopic transport approach - in comparison to the available data from the SPS and RHIC. The analysis shows that the dynamics of c, c-bar quarks at RHIC are dominated by partonic or `pre-hadronic' interactions in the strongly coupled plasma stage. Both the `charmonium melting' and the hadronic `comover absorption and recreation model' are found, however, to be compatible with the experimental observation at SPS energies; the experimental ratio of Psi'/J/Psi versus centrality clearly favors the `hadronic comover' scenario. We find that the collective flow of charm in the purely hadronic Hadron-String Dynamics (HSD) transport appears compatible with the data at SPS energies, but substantially underestimates the data at top RHIC energies. Thus, the large elliptic flow v2 of D-mesons and the low R_AA(p_T) of J/Psi seen experimentally have to be attributed to early interactions of non-hadronic degrees of freedom. Simultaneously, we observe that non-hadronic interactions are mandatory in order to describe the narrowing of the J/Psi rapidity distribution from pp to central Au+Au collisions at the top RHIC energy. We demonstrate additionally that the strong quenching of low-pT J/Psi's in central Au+Au collisions indicates that a large fraction of final J/Psi mesons is created by a coalescence mechanism close to the phase boundary. Throughout this review we, furthermore, provide predictions for charm observables from Au+Au collisions at FAIR energies of 25-35 AGeV.Comment: review for Int. J. Mod. Phys. E, 75 pages, 50 figure
    corecore