88 research outputs found

    Cascades with Adjoint Matter: Adjoint Transitions

    Get PDF
    A large class of duality cascades based on quivers arising from non-isolated singularities enjoy adjoint transitions - a phenomenon which occurs when the gauge coupling of a node possessing adjoint matter is driven to strong coupling in a manner resulting in a reduction of rank in the non-Abelian part of the gauge group and a subsequent flow to weaker coupling. We describe adjoint transitions in a simple family of cascades based on a Z2-orbifold of the conifold using field theory. We show that they are dual to Higgsing and produce varying numbers of U(1) factors, moduli, and monopoles in a manner which we calculate. This realizes a large family of cascades which proceed through Seiberg duality and Higgsing. We briefly describe the supergravity limit of our analysis, as well as a prescription for treating more general theories. A special role is played by N=2 SQCD. Our results suggest that additional light fields are typically generated when UV completing certain constructions of spontaneous supersymmetry breaking into cascades, potentially leading to instabilities.Comment: 29 pages, a few typos fixed, improved discussion, added figure; now there is 1 figur

    IIA Perspective On Cascading Gauge Theory

    Full text link
    We study the N=1 supersymmetric cascading gauge theory found in type IIB string theory on p regular and M fractional D3-branes at the tip of the conifold, using the T-dual type IIA description. We reproduce the supersymmetric vacuum structure of this theory, and show that the IIA analog of the non-supersymmetric state found by Kachru, Pearson and Verlinde in the IIB description is metastable in string theory, but the barrier for tunneling to the supersymmetric vacuum goes to infinity in the field theory limit. We also comment on the N=2 supersymmetric gauge theory corresponding to regular and fractional D3-branes on a near-singular K3, and clarify the origin of the cascade in this theory.Comment: 43 pages, 18 figures, harvma

    Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources

    Full text link
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Purpose: While many examples have shown unsustainable use of freshwater resources, existing LCIA methods for water use do not comprehensively address impacts to natural resources for future generations. This framework aims to (1) define freshwater resource as an item to protect within the Area of Protection (AoP) natural resources, (2) identify relevant impact pathways affecting freshwater resources, and (3) outline methodological choices for impact characterization model development. Methods: Considering the current scope of the AoP natural resources, the complex nature of freshwater resources and its important dimensions to safeguard safe future supply, a definition of freshwater resource is proposed, including water quality aspects. In order to clearly define what is to be protected, the freshwater resource is put in perspective through the lens of the three main safeguard subjects defined by Dewulf et al. (2015). In addition, an extensive literature review identifies a wide range of possible impact pathways to freshwater resources, establishing the link between different inventory elementary flows (water consumption, emissions, and land use) and their potential to cause long-term freshwater depletion or degradation. Results and discussion: Freshwater as a resource has a particular status in LCA resource assessment. First, it exists in the form of three types of resources: flow, fund, or stock. Then, in addition to being a resource for human economic activities (e.g., hydropower), it is above all a non-substitutable support for life that can be affected by both consumption (source function) and pollution (sink function). Therefore, both types of elementary flows (water consumption and emissions) should be linked to a damage indicator for freshwater as a resource. Land use is also identified as a potential stressor to freshwater resources by altering runoff, infiltration, and erosion processes as well as evapotranspiration. It is suggested to use the concept of recovery period to operationalize this framework: when the recovery period lasts longer than a given period of time, impacts are considered to be irreversible and fall into the concern of freshwater resources protection (i.e., affecting future generations), while short-term impacts effect the AoP ecosystem quality and human health directly. It is shown that it is relevant to include this concept in the impact assessment stage in order to discriminate the long-term from the short-term impacts, as some dynamic fate models already do. Conclusions: This framework provides a solid basis for the consistent development of future LCIA methods for freshwater resources, thereby capturing the potential long-term impacts that could warn decision makers about potential safe water supply issues in the future

    A slice of AdS_5 as the large N limit of Seiberg duality

    Get PDF
    A slice of AdS_5 is used to provide a 5D gravitational description of 4D strongly-coupled Seiberg dual gauge theories. An (electric) SU(N) gauge theory in the conformal window at large N is described by the 5D bulk, while its weakly coupled (magnetic) dual is confined to the IR brane. This framework can be used to construct an N = 1 MSSM on the IR brane, reminiscent of the original Randall-Sundrum model. In addition, we use our framework to study strongly-coupled scenarios of supersymmetry breaking mediated by gauge forces. This leads to a unified scenario that connects the extra-ordinary gauge mediation limit to the gaugino mediation limit in warped space.Comment: 47 Pages, axodraw4j.st

    The ABCDEF's of Matrix Models for Supersymmetric Chern-Simons Theories

    Full text link
    We consider N = 3 supersymmetric Chern-Simons gauge theories with product unitary and orthosymplectic groups and bifundamental and fundamental fields. We study the partition functions on an S^3 by using the Kapustin-Willett-Yaakov matrix model. The saddlepoint equations in a large N limit lead to a constraint that the long range forces between the eigenvalues must cancel; the resulting quiver theories are of affine Dynkin type. We introduce a folding/unfolding trick which lets us, at the level of the large N matrix model, (i) map quivers with orthosymplectic groups to those with unitary groups, and (ii) obtain non-simply laced quivers from the corresponding simply laced quivers using a Z_2 outer automorphism. The brane configurations of the quivers are described in string theory and the folding/unfolding is interpreted as the addition/subtraction of orientifold and orbifold planes. We also relate the U(N) quiver theories to the affine ADE quiver matrix models with a Stieltjes-Wigert type potential, and derive the generalized Seiberg duality in 2 + 1 dimensions from Seiberg duality in 3 + 1 dimensions.Comment: 30 pages, 5 figure

    Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality

    Get PDF
    We study lattice effects in strongly coupled systems of fermions at a finite density described by a holographic dual consisting of fermions in Anti-de-Sitter space in the presence of a Reissner-Nordstrom black hole. The lattice effect is encoded by a periodic modulation of the chemical potential with a wavelength of order of the intrinsic length scales of the system. This corresponds with a highly complicated "band structure" problem in AdS, which we only manage to solve in the weak potential limit. The "domain wall" fermions in AdS encoding for the Fermi surfaces in the boundary field theory diffract as usually against the periodic lattice, giving rise to band gaps. However, the deep infrared of the field theory as encoded by the near horizon AdS2 geometry in the bulk reacts in a surprising way to the weak potential. The hybridization of the fermions bulk dualizes into a linear combination of CFT1 "local quantum critical" propagators in the bulk, characterized by momentum dependent exponents displaced by lattice Umklapp vectors. This has the consequence that the metals showing quasi-Fermi surfaces cannot be localized in band insulators. In the AdS2 metal regime, where the conformal dimension of the fermionic operator is large and no Fermi surfaces are present at low T/\mu, the lattice gives rise to a characteristic dependence of the energy scaling as a function of momentum. We predict crossovers from a high energy standard momentum AdS2 scaling to a low energy regime where exponents found associated with momenta "backscattered" to a lower Brillioun zone in the extended zone scheme. We comment on how these findings can be used as a unique fingerprint for the detection of AdS2 like "pseudogap metals" in the laboratory.Comment: 42 pages, 5 figures; v2, minor correction, to appear in JHE

    SUSY monopole potentials in 2+1 dimensions

    Get PDF
    Gauge theories in 2+1 dimensions can admit monopole operators in the potential. Starting with the theory without monopole potential, if the monopole potential is relevant there is an RG flow to the monopole-deformed theory. Here, focusing on U(Nc) SQCD with Nf flavors and N=2 supersymmetry, we show that even when the monopole potential is irrelevant, the monopole-modified theory TM can exist and enjoy Seiberg-like dualities. We provide a renormalizable UV completion of TM and an electric-magnetic dual description T\u2032M. We subject our proposal to various consistency checks such as mass deformations and Sb3 partition functions checks. We observe that TM is the S-duality wall of 4D N=2 SQCD. We also consider monopole-deformed theories with Chern-Simons couplings and their duals

    Non-perturbative Vacuum Destabilization and D-brane Dynamics

    Get PDF
    We analyze the process of string vacuum destabilization due to instanton induced superpotential couplings which depend linearly on charged fields. These non-perturbative instabilities result in potentials for the D-brane moduli and lead to processes of D-brane recombination, motion and partial moduli stabilization at the non-perturbative vacuum. By using techniques of D-brane instanton calculus, we explicitly compute this scalar potential in toroidal orbifold compactifications with magnetized D-branes by summing over the possible discrete instanton configurations. We illustrate explicitly the resulting dynamics in globally consistent models. These instabilities can have phenomenological applications to breaking hidden sector gauge groups, open string moduli stabilization and supersymmetry breaking. Our results suggest that breaking supersymmetry by Polonyi-like models in string theory is more difficult than expected.Comment: 61 pages, 6 figures, 5 tables; Minor corrections, version published in JHE

    The addition of locust bean gum but not water delayed the gastric emptying rate of a nutrient semisolid meal in healthy subjects

    Get PDF
    BACKGROUND: Most of the previous studies regarding the effects of gel-forming fibres have considered the gastric emptying of liquid or solid meals after the addition of pectin or guar gum. The influence of locust bean gum, on gastric emptying of nutrient semisolid meals in humans has been less well studied, despite its common occurrence in foods. Using a standardised ultrasound method, this study was aimed at investigating if the gastric emptying in healthy subjects could be influenced by adding locust been gum, a widely used thickening agent, or water directly into a nutrient semisolid test meal. METHODS: The viscosity of a basic test meal (300 g rice pudding, 330 kcal) was increased by adding Nestargel (6 g, 2.4 kcal), containing viscous dietary fibres (96.5%) provided as seed flour of locust bean gum, and decreased by adding 100 ml of water. Gastric emptying of these three test meals were evaluated in fifteen healthy non-smoking volunteers, using ultrasound measurements of the gastric antral area to estimate the gastric emptying rate (GER). RESULTS: The median value of GER with the basic test meal (rice pudding) was estimated at 63 %, (range 47 to 84 %), (the first quartile = 61 %, the third quartile = 69 %). Increasing the viscosity of the rice pudding by adding Nestargel, resulted in significantly lower gastric emptying rates (p < 0.01), median GER 54 %, (range 7 to 71 %), (the first quartile = 48 %, the third quartile = 60 %). When the viscosity of the rice pudding was decreased (basic test meal added with water), the difference in median GER 65 %, (range 38 to 79 %), (the first quartile = 56 %, the third quartile = 71 %) was not significantly different (p = 0.28) compared to the GER of the basic test meal. CONCLUSIONS: We conclude that the addition of locust bean gum to a nutrient semisolid meal has a major impact on gastric emptying by delaying the emptying rate, but that the addition of water to this test meal has no influence on gastric emptying in healthy subjects
    • 

    corecore