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1 Introduction and results

Three-dimensional gauge theories admit an interesting class of gauge-invariant disorder

operators which can be defined by prescribing suitable boundary conditions around a point

for the gauge fields in the path integral. These operators carry a magnetic (or topological)

charge, hence they are called monopole operators and create some units of magnetic flux
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on a two-sphere surrounding their insertion point. Despite being local, these operators

are not polynomial in the elementary fields and this fact makes it difficult to study what

happens when they are added to the Lagrangian.

Long ago Polyakov [1] showed that monopole operators can actually appear in the

potential, at the infrared fixed-point of an RG-flow triggered by Higgsing a gauge symmetry

leading to confinement.

In condensed-matter physics, quantum mechanical lattice models in two spatial dimen-

sions admit, in the thermodynamic limit, interesting second-order quantum phase transi-

tions which should be described by a (2 + 1)-dimensional conformal field theory (CFT) [2].

Such a CFT3 could for instance be a U(1) gauge theory with some number of fermionic

and/or scalar charged matter fields (flavors). A natural question is if the potential of the

gauge theory description contains monopole operators M or not. CFTs with monopoles

admit a smaller global symmetry, but on the lattice it is not easy to understand what the

emergent low-energy global symmetries are, and so it is not clear whether the monopole

potential is generated or not. Much work has been devoted to investigate this question,

see for instance [3–6] for some examples.

Some of that work has focused on trying to determine the scaling dimension ∆[M]

of monopole operators M in the infra-red (IR) of the gauge theory without monopole

potential. We will call such a IR theory T0. If the scaling dimension ∆[M] is below 3

in T0, then the monopole deformation is relevant and we naturally expect the monopole

potential to be turned on in the absence of fine-tuning. This triggers an RG flow to some

other phase. Usually the theory has some other relevant parameter that, as varied, leads

the RG flow to different phases. If the phase transition is second order, one can tune the

relevant parameter and obtain a fixed point TM, different from T0. Of course, it might well

happen that the phase transition is first order and the fixed point TM does not exist. In

general answering these questions is very hard.

In this paper we study the effect of adding monopole operators to the Lagrangian of

supersymmetric (SUSY) theories. This simplifies our lives because supersymmetry gives

us much more non-perturbative control on the dynamics of the theories. In various cases

we can argue that the phase transitions are second order, and so we can argue for the

existence of the CFTs TM.

Monopole operators in SUSY theories have been extensively investigated (see e.g. [7–

21]). Supersymmetry allows for a quantitative control over the scaling dimensions of super-

symmetric operators and in particular of supersymmetric monopoles. This in turn makes

it possible to study in great details the moduli space of vacua and to determine how the

gauge invariant operators map when multiple dual descriptions of the same IR physics —

so-called IR dualities — are available.

Superpotentials involving monopole operators have appeared in the literature in var-

ious circumstances. For example, they famously appear in the Aharony dual of U(Nc) or

USp(2Nc) theories with fundamental quarks [22]. In [23] it has been shown how to obtain

the Aharony pair of U(Nc) dual theories starting from a duality with Chern-Simons cou-

plings and no monopole superpotentials, by turning on suitable real mass deformations.

In this process the monopoles enter the superpotential as 3D instanton effects [24], so this
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construction provides a UV completion of the Aharony dual pairs in terms of renormaliz-

able theories.

Monopole superpotentials can also appear as the effect of reducing a 4D theory on

a circle down to 3D [22, 25–27]. A careful study of the moduli spaces indicates that,

contrary to the naive dimensional reduction, the compactification on a circle of finite size

allows for the generation of Kaluza-Klein monopoles which enter the superpotential. These

monopoles play a key role in consistently deriving 3D dualities from 4D ones. When

reducing on a circle a pair of dual 4D theories, at the first step one obtains a 3D dual pair

with monopole superpotentials. The monopole operators are charged under topological and

axial symmetries and break these symmetries in 3D (such symmetries would be anomalous

or non-existent in 4D). At this point one can turn on various real mass deformations

and recover 3D dualities without monopole superpotentials. This procedure has been

successfully implemented for theories with various gauge and matter content, for a review

see [28] and references therein.

Rather than trying to get rid of the monopoles, one can also turn on other real mass

deformations, flow to new theories with monopole superpotentials and perhaps discover

new dualities. This is what we do in this paper. Starting from the 4D Intriligator-Pouliot

duality [29, 30] we arrive at U(Nc) SQCD gauge theories with Nf flavors and superpotential

Wmon = M+ + M−, where M± are the two simplest supersymmetric monopoles in the

theory, with topological charge ±1. We call this theory TM and propose that it has a

dual description T ′M given by a U(Nf −Nc − 2) theory with Nf flavors, N2
f gauge singlets

and superpotential W =
∑Nf

ij=1M
i
j q̃iq

j + M̂+ + M̂−. We provide various evidences of

this duality, matching the gauge-invariant operators, comparing partition functions and

performing real and complex mass deformations.

There are various reasons why we are interested in theories with monopole superpo-

tentials turned on. They appear in the context of the 3D-3D correspondence of [31–36],

in brane setups with low enough supersymmetry [37] and in T-brane systems [38]. It

also seems that monopole superpotentials appear in theories describing certain 3D duality

walls [39] and codimension two defects in 5D [40, 41]. The sphere partition functions of

those domain walls and defect theories can be obtained using the AGT correspondence [42].

The match to the CFT calculations often requires tuning the real mass and FI parameters

of the gauge theory to some specific values. The presence of monopoles operators in the

superpotential can explain these tunings. For example, we show that this is the case for

the SQCD S-duality wall which we identify with our theory TM, for Nf = 2(Nc + 1).

One of the most crucial questions is whether the fixed point TM exists — as we vary

Nc, Nf — as a CFT distinct from T0 (the latter is the fixed point of the theory with no

monopole superpotential). The 4D→ 3D construction involving the circle reduction of the

4D Intriligator-Pouliot duality followed by a real mass deformation (schematically depicted

as the pink and red flows in figure 1) does not really answer this question. For instance,

in a range of values of Nc, Nf it might well happen that TM is an irrelevant deformation

of T0 (the monopole superpotential is a dangerously irrelevant deformation). If the fixed

point TM exists, another question is what RG flows can reach it.
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Figure 1. Schematic structure of RG flows that can lead to TM. The pink flow is a 4D → 3D

reduction on S1, while the red flow is a real mass deformation. The green flow is a deformation

of T0 by Wmon, which is relevant on the left but irrelevant on the right (and therefore it does not

leave T0). The blue flow involves more degrees of freedom: the Ising-SCFT and extra free fields

(see section 4.1).

The conservative approach to answer those questions, as mentioned earlier, is to first

flow to the fixed point T0 of the U(Nc) SQCD without the monopole superpotential, and

then try to reach TM (this corresponds to the green flow in figure 1 on the left). This flow

is possible whenWmon is a relevant deformation in T0 which, for any fixed value of Nc, only

happens for two or three values of Nf [43]. If Nf is larger,Wmon is a dangerously irrelevant

operator which deforms the moduli space but cannot trigger the flow to TM (figure 1 on

the right).

However one could try to reach TM with other more involved flows. For example, we

will show that starting from T0 plus some decoupled copies of the so-called Ising-SCFT

and other free fields, turning on suitable couplings we can reach TM for Nf up to 3Nc + 3.

This chain of flows is represented by the blue arrows in figure 1. In other words, we can

argue for the existence of TM in a much wider window than the narrow one of relevance of

Wmon in T0.

The results of this paper strongly suggest that, even in cases when Wmon is irrelevant

in T0, TM might be the thermodynamic limit of quantum spin models on a planar lattice.

This might be relevant also for non-supersymmetric models.

As we explore the parameter space (Nc, Nf ) and lower the number of flavors below

Nf = 3Nc + 3 we find a very rich structure. For example, when we cross the unitarity

bound for mesonic operators we encounter some decoupled sectors. Continuing to lower

the number of flavors at fixed Nc we encounter, at Nf = Nc + 2, an effective description

in terms of a Wess-Zumino model, at Nf = Nc + 1 a smooth quantum-deformed moduli

space, and for Nf ≤ Nc no vacua.

We do not know if the fixed point TM still exists for values of Nf larger than 3Nc + 3,

and in that case whether there is an upper bound on the value of Nf and what this upper

bound could be. We leave this important issue for future work.

Starting from the TM = T ′M duality and turning on suitable real mass deformations, we

obtain various other dualities. For instance, dualities for theories with a single monopole
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in the superpotential, say W = M+, and possibly with Chern-Simons couplings. We also

consider higher monopole deformations, W = (M+)n + (M−)n with n = 2, 3.

It is clear that the analysis in this paper could be repeated for theories with more

general gauge group and matter content. It would of course be very interesting to know

quantitatively what happens in non-supersymmetric examples.

The paper is organized as follows. In section 2 we introduce the theory TM and its

dual T ′M by reducing the 4D Intriligator-Pouliot duality [29, 30] on a circle. We describe

some basic properties of the SCFT TM, discuss a unitarity bound on Nf and match the

moduli space of vacua to that of T ′M. In section 3 we describe the dynamics of TM as we

vary Nc and Nf .

In section 4 we describe how to obtain TM from an RG flow that starts from a 3D

weakly-coupled renormalizable theory, when Nf ≤ 3Nc + 3. This involves adding more

degrees of freedom.

In section 5 we relate TM with Nf = 2Nc + 2 to the duality-wall theory of 4D N = 2

SQCD found in [39].

In section 6 we briefly explore the case of higher-monopole superpotentials.

In section 7 we derive, at the level of the S3
b partition function, the 4D → 3D flow

that leads to the duality TM = T ′M. We also show that our duality reduces to the Aharony

duality upon a suitable real mass deformation.

In section 8 we consider more real mass deformations of the duality TM = T ′M. We

derive new dualities involving a superpotenital W = M+, and dualities for theories with

Chern-Simons couplings.

2 U(Nc) SQCD with monopole superpotential and its dual

In this section we introduce our main characters: the theory U(Nc) SQCD with linear

monopole superpotential Wmon, and the fixed point TM. Monopole operators are local

disorder operators which create magnetic flux on the two-sphere surrounding the insertion

point. In recent years there has been much progress in understanding the properties of

these operators in 3D N = 4 and N = 2 gauge theories, see e.g. [7–21]. For example it

has been derived a formula to compute the charge of a monopole operator of magnetic

charge m under any Abelian global symmetry. The quantum corrections δq to the charges

of monopoles are obtained via the one-loop formula

δq[M] = −1

2

∑
fermions ψ

q(ψ)
∣∣ρψ(m)

∣∣ , (2.1)

where the fermions ψ transform as the weights ρψ under the gauge group.

In the case of SQCD with Nf flavors and vanishing superpotential W = 0 there

are two fundamental monopole operators M+, M− that correspond to magnetic fluxes

m = (1, 0, . . . , 0) and m = (0, . . . , 0,−1). The continuous global symmetry of the theory is

– 5 –
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U(1)R ×U(1)A × SU(Nf )2 ×U(1)T and the table of charges is the following:

U(1)R U(1)A SU(Nf )` SU(Nf )r U(1)T

Q RQ 1 Nf 1 0

Q̃ RQ 1 1 Nf 0

M 2RQ 2 Nf Nf 0

M+ (1−RQ)Nf −Nc + 1 −Nf 1 1 1

M− (1−RQ)Nf −Nc + 1 −Nf 1 1 −1

(2.2)

The monopoles M± have charges (±1,−Nf ) under the topological and axial symmetries

U(1)T ×U(1)A. We will first consider the superpotential

Wmon = M+ + M− . (2.3)

Notice that (2.3) breaks both U(1)T and U(1)A, but it does not break the discrete Z2

charge conjugation symmetry. In section 6 we will study other charge conjugation sym-

metric choices, while in section 8 we will consider adding only M+ or M−, which preserves

one combination of U(1)T and U(1)A but breaks charge conjugation. The monopole super-

potential M+M− in the U(Nc) theory has been discussed in [26].

2.1 TM and its dual from 4D

A possible way to reach TM is to start from the 4D USp(2Nc) SQCD theory with 2Nf

fundamental flavors. This theory has a dual description as a USp(2Nf−2Nc−4) theory with

2Nf fundamental flavors, Nf (2Nf−1) singlets Mab organized into an antisymmetric matrix,

and superpotential W =
∑2Nf

a<b M
abqa·qb [29, 30]. When this dual pair is compactified

on R3 × S1 [25, 26], non-perturbative effects due to Euclidean monopole configurations

wrapping the circle generate superpotential terms proportional to the monopole operators.

On the electric side one finds that W = ηM is generated, while on the magnetic side one

finds η̃ M̂, where M, M̂ are the monopole operators parameterizing the Coulomb branches

of the electric and magnetic theory, respectively, and η, η̃ are energy scales. In particular

η = Λb with b the one-loop beta function and Λ = µ exp
(
− 4π

g4(µ)2

)
the dynamically

generated scale. In the rest of this paper we will mostly omit the coefficients η, η̃. The

deformation by the monopole superpotential drives the theory to a non-trivial fixed point.

This duality was tested in [26] at the level of the partition function on the squashed

three-sphere S3
b [44]. Since the monopole superpotential breaks the U(1)A symmetry, we

cannot turn on the real mass deformation associated to it. At the level of the S3
b partition

function this fact appears as a constraint on the mass parameters:∑2Nf

a=1
ma = iQ(Nf −Nc − 1) , (2.4)

where Q = b2 + b−2 and b is the squashing parameter.

In [26] it was also shown how to recover the 3D Aharony duality for USp(2Nc) theo-

ries [22] from this compactified 4D duality. The idea is to start with 2Nf + 2 flavors and
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take the real mass deformation m2Nf+1 = s+α, m2Nf+2 = −s+α with s→∞. Since α is a

free parameter the constraint (2.4) is lifted and U(1)A is restored. The only SUSY vacuum

on both sides of the duality is the trivial one, in which the real scalar in the vector multiplet

(which can be diagonalised by a gauge rotation) takes zero VEV, 〈σj〉 = 0. On the electric

side the limit reduces the theory to USp(2Nc) with 2Nf flavors and no superpotential. On

the magnetic side the limit gives USp(2Nf − 2Nc − 2) with 2Nf flavors. The limit reduces

the meson matrix to a Nf (2Nf−1) block Mab plus an extra singlet S which couples linearly

to the dual monopole M̂ in the magnetic superpotential W =
∑2Nf

a<b M
abqa·qb + S M̂.

Here we are interested in a different 3D limit. We split the 2Nf masses into two sets,

m1, . . . ,mNf and m̃1, . . . , m̃Nf and consider the real mass deformation

ma → ma + s , m̃b → m̃b − s , i = 1, . . . , Nf (2.5)

with s → ∞. This time there is a non-trivial SUSY vacuum at infinity in which, as we

will see in details at the level of partition function in section 7.1, half of the flavors remain

massles and the gauge group is broken to U(Nc) on the electric side, and to U(Nf−Nc−2) on

the magnetic side. The real mass deformation also reduces the number of massless singlets

on the magnetic side to a N2
f block, organized in the matrix Ma

b, which enters the magnetic

superpotential as a Lagrange multiplier coupled to the dual mesons,
∑Nf

a,b=1M
a
bq̃aq

b.

The original USp(2Nc) theory on S1 had no topological nor axial symmetry. In the

final U(Nc) theory these symmetries are broken by non-perturbative effects, namely by

the original instanton and by an extra non-perturbative Affleck-Harvey-Witten contribu-

tion [24] associated to the breaking of the gauge group USp(2Nc) → U(Nc). These two

non-perturbative contributions can be identified with the sum of the two fundamental

monopoles, Wmon = M+ + M−, breaking U(1)A ×U(1)T. The discussion on the magnetic

side is similar. Eventually we arrive to the following duality between the electric theory

TM and a magnetic theory T ′M:

TM : U(Nc) SQCD with Nf flavors, W = M+ + M− (2.6)

and

T ′M : U(Nf −Nc − 2) SQCD with Nf flavors qi, q̃i and N2
f singlets M i

j ,

W =

Nf∑
i,j=1

M i
j q̃iq

j + M̂+ + M̂− .
(2.7)

We discuss the map of the operators in the chiral ring in section 2.4. In section 7.2 we

show, as a consistency check, that the duality TM = T ′M reduces to the Aharony duality

for U(Nc) theories [22] after a suitable real mass deformation. Further consistency checks

via complex deformations are given in section 3.3.

An obvious question is whether we can also reach TM starting from T0, the fixed point

of the 3D N = 2 U(Nc) gauge theory with Nf chiral multiplets Qi in the fundamental

and Q̃j in the antifundamental representation of U(Nc) and W = 0. The chiral ring of

T0 [22, 25] for Nf ≥ Nc−1 is generated by a Nf ×Nf matrix of mesonic fields M i
j = QiQ̃j

– 7 –
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and by two monopole operators M+, M−. In T0 we can try to turn on the superpotential

term Wmon = M+ +M− and reach TM. As we will discuss in section 4, for a large portion

of the range of Nc, Nf the deformationWmon is irrelevant at T0 and therefore simply adding

it to T0 does not initiate an RG flow that leads to a new fixed point.

However the non-trivial fixed point TM does exist for a larger window of parameters

and the RG flow across dimensions we have just discussed provides a UV completion for TM.

We postpone the question of how to reach the SCFT TM starting from a weakly coupled

3D Lagrangian model to section 4. In the remaining of this section we will study TM for

various ranges of values of Nc, Nf without further inquiring how TM is UV completed.

UV completion for theories with monopoles in the superpotential have been discussed

also in [23].

Let us remark that, as long as the fixed point TM exists, we can study some of its

properties — such as its moduli space or the anomalous dimensions of chiral operators —

using Wmon even if such an operator is irrelevant at T0.

2.2 Basic properties of TM

In TM the superpotential (2.3) has R-charge 2, so the superconformal R-charge R[Q] of the

quarks Q, Q̃ can be computed imposing that the monopole operators, whose R-charge is

given by the formula (2.1)

R[M±] = Nf (1−RQ)−Nc + 1 , (2.8)

have R-charge 2:

R[M±]TM = 2 ⇒ R[Q]TM = 1− Nc + 1

Nf
. (2.9)

In TM the operators M± are not part of the chiral ring anymore: the deformation by

the monopole superpotential Wmon lifts the two branches of the Coulomb branch (when

present) and the mixed branches parametrized by M±. By standard arguments [25],

suppose to give a VEV to one of the monopoles M±. This breaks the gauge group to

SU(Nc−1)×U(1) and at low energies the monopole operator becomes a fundamental field

parameterizing the would be Coulomb branch, however the F-term potential following from

Wmon = M+ + M− provides a positive energy lifting those vacua.

For Nf ≥ Nc + 2, the continuous flavor symmetry of the IR SCFT is SU(Nf )2, and

the N2
f generators of the chiral ring transform in the bifundamental representation. The

pure Higgs branch is the space of Nf ×Nf matrices M with rankM ≤ Nc. This space has

complex dimension 2NcNf −N2
c and is generated by the N2

f mesons M i
j subject to various

non-independent relations:

εi1,...,iNfM
i1
ji
. . .M

iNc+1

jNc+1
= 0 . (2.10)

As we will see, for smaller values of Nf the IR dynamics is different. In the Nc = 1 we

can use Abelian mirror symmetry [25, 45] to check these statements, which we discuss in

appendix A.
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2.3 Unitarity bound

From equation (2.9) we can find constraints on the previous discussion. The meson fields

M = QQ̃ must satisfy the unitarity bound:

R[M ]TM = 2R[Q]TM ≥
1

2
⇒ Nf ≥

4

3
(Nc + 1) . (2.11)

If Nf >
4
3(Nc+1) there can be an interacting SCFT in which the R-charges are as in (2.9).

If Nf is smaller than or equal to the bound, the N2
f basic mesonic operators M become

free decoupled fields in the IR. This is somehow analogous to what happens in 4D SU(Nc)

SQCD with Nf flavors when Nf ≤ 3
2Nc [29], or in 3D N = 4 “ugly” or “bad” theories [9].

Other examples with similar behavior have been studied in [43, 46]. One noteworthy

aspect is that the theory breaks into a free sector and a leftover interacting SCFT. We will

provide some evidence for this statement in section 3.1. In the dual SCFT, for Nf ≤ 4
3Nc a

particular cubic superpotential term, coupling the gauge-singlet mesons to the dual quarks,

becomes irrelevant and must be dropped. This picture in the magnetic theory is consistent

with having N2
f free mesons plus an interacting SCFT on the electric side.

2.4 Map of the moduli space of vacua

As a first test of the duality TM = T ′M we show how the chiral ring generators are related.

In the magnetic theory T ′M imposing that the monopole superpotential has R-charge 2

allows us to extract the R-charge of the magnetic flavors:

R[M̂±]T ′M = Nf

(
1−R(q)

)
− (Nf −Nc − 2) + 1 = 2 ⇒ R[q]T ′M =

Nc + 1

Nf
. (2.12)

The gauge-singlet fields M i
j have thus R-charge

R[M i
j ]T ′M = 2

(
1− Nc + 1

Nf

)
, (2.13)

matching the N2
f mesons QiQ̃j of the electric theory (2.9). These operators are the gener-

ators of the chiral ring and transform in the bifundamental representation of SU(Nf )2.

In order to show that the moduli spaces of vacua match, we need to verify the relations

satisfied by the generators. In the electric theory the relations are the ones in (2.10) forcing

the Nf ×Nf matrix QiQ̃j to have rank at most Nc.

In the magnetic theory, when the singlets M i
j get a VEV of rank r, they give mass to

r of the Nf flavors so the theory flows to U(Nf − Nc − 2) with Nf − r flavors and same

superpotential W = M i
j q̃iq

j + M̂+ + M̂− as before. If r is larger than Nc, T ′M has no

vacuum. To see that, we can perform Aharony duality [22] leading to U(Nc + 2− r) with

Nf − r flavors and superpotential

W = N+Ŝ− + N−Ŝ+ + Ŝ+ + Ŝ− , (2.14)

where Ŝ± are now gauge singlets dual to the previous monopoles, while N± are the

monopoles of the new description. The F-terms of Ŝ± imply that both N+ and N− must

– 9 –
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Figure 2. Dynamics of TM in various regions of the parameter space Nc, Nf . Blue line Nf =
4
3 (Nc + 1), green line Nf = Nc + 2, orange line Nf = Nc + 1.

take a non-zero VEV, which in a U(k) theory is compatible with supersymmetry only if

k > 1. We conclude that there are supersymmetric vacua only if r ≤ Nc. The non-vanishing

VEV of both N± breaks the gauge symmetry to U(Nc − r), and if the singlets M i
j have a

VEV of maximal rank r = Nc then there is no leftover gauge symmetry in the IR and one

finds precisely one point in the moduli space.

We conclude that in both descriptions the moduli space of vacua is the set of Nf ×Nf

matrices with rank at most Nc.

3 Dynamics of TM in the (Nc, Nf)-space

Our discussion of the Abelian case in appendix A and the observation on the constraints

imposed by unitarity suggest that as we vary Nc, Nf the theory has a non-trivial dynamics.

Indeed the picture is quite intricate and goes as represented in figure 2 and explained in

the following.

• For Nf ≥ Nc + 3, the IR limit TM contains an interacting factor and has the dual

description T ′M.

– For Nf >
4
3(Nc + 1) (above blue line) TM is completely interacting.

– For Nc+ 3 ≤ Nf ≤ 4
3(Nc+ 1) (above green line and up to blue line) the IR limit

TM breaks into an interacting SCFT and a decoupled free sector.
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• For Nf = Nc + 2 (green line), TM is described by a Wess-Zumino model. For Nc = 1,

Nf = 3 this gives an interacting SCFT. For Nc = 2 the superpotential is marginally

irrelevant and for Nc ≥ 3 it is irrelevant, therefore TM is free.

• For Nf = Nc + 1 (orange line) there is a smooth moduli space associated to the

deformation, which is a quantum deformation of the classical Higgs branch, therefore

the IR limit TM is free.

• For Nf ≤ Nc (below the orange line) the theory has no supersymmetric vacua and

TM does not exist.

3.1 The region Nc + 3 ≤ Nf ≤ 4
3
(Nc + 1): a decoupled sector

As we observed in section 2.2, in the region Nc + 3 ≤ Nf ≤ 4
3(Nc + 1) if we use the

R-charges in (2.9) the mesons of the electric theory would violate the unitarity bound.

We show here that in the dual theory T ′M in this region the superpotential terms M i
j q̃iq

j

are actually irrelevant. Once we discard them, the N2
f gauge singlets M i

j become free and

decoupled. There are then accidental symmetries in the IR, such that there exist consistent

R-charges that do not violate the unitarity bounds. This is what one would expect in the

electric theory.

To see this, we start from a U(N ′c = Nf − Nc − 2) theory with Nf flavors q, q̃ and

monopole superpotential W = M̂+ + M̂−, that we can call T . We compute the R-charges

of q, q̃ by setting R[M̂±] = 2 and recalling that we are considering Nf ≤ 4
3(Nc+1) we find:

R[Q]T = 1− N ′c + 1

Nf
=
Nc + 1

Nf
≥ 3

4
, (3.1)

hence in T the mesons are above the unitarity bound and the superpotential deformation

Wdef = M i
j q̃iq

j is irrelevant, R[Wdef] ≥ 2. We then propose that the dual description of

TM for Nc + 3 ≤ Nf ≤ 4
3(Nc + 1) is given by N2

f free chiral fields M i
j together with a

U(Nf −Nc−2) gauge theory with W = M̂+ +M̂−. For Nf = 4
3(Nc+1) the superpotential

deformation is marginally irrelevant.

Notice that Nf ≤ 4
3(Nc + 1) implies that the theory U(N ′c) has Nf ≥ 4(N ′c + 1) flavors.

This is outside the range of parameters for which we have a 3D UV completion of TM
(see section 4). We do not know whether, in this range of parameters, the superpotential

W = M̂+ + M̂− leads to a fixed point distinct from the one for W = 0 or not. In either

case, the fixed point is interacting.

3.2 The line Nf = Nc + 2: a Wess-Zumino model

This case is more easily studied starting from the 4D duality for USp(2Nc) SQCD [30] with

2Nf = 2Nc+4. The compactification to 3D and the real mass deformation (2.5) produce an

RG flow to the U(Nc) theory with Nf = Nc+2 flavors andW = M+ +M−. In 4D, the dual

magnetic theory is a Wess-Zumino model of Nf (2Nf − 1) gauge singlets Mab (organized

into an antisymmetric matrix) with superpotential W = Pf(M). The 3D compactification

– 11 –
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does not introduce non-perturbative effects, and after the real mass deformation only N2
f

singlets M i
j (organized into a Nf ×Nf matrix) interacting with superpotential

W = detM (3.2)

survive at low energies. The F-term equations following from the latter superpotential

precisely impose the constraint that rankM ≤ Nc.

On the electric side, the requirement that R[Wmon] = 2 would fix R[Q] = 1/Nf ,

therefore only the case Nc = 1, Nf = 3 satisfies the unitarity bound for the mesons. This

case has been discussed at length in [37] (for Nc = 2, Nf = 4 the bound is saturated, and

we expect the mesons to become free fields). Correspondingly, on the magnetic side we

find that the superpotential W = detM is irrelevant for Nf > 4 and marginally irrelevant

for Nf = 4. At the IR fixed point the massless degrees of freedom are N2
f free meson fields.

3.3 Complex masses: consistency checks and the Nf < Nc + 2 regions

We can perform simple consistency checks of the proposed dualities by taking complex mass

deformations. We start in the region Nf ≥ Nc+3 and consider a complex mass deformation

of the electric side by the superpotential Wmass = mQNf Q̃Nf . The total superpotential

is thus

Wel = M+ + M− +mQNf Q̃Nf . (3.3)

In the IR we are left with Nf − 1 flavors. Let us analyze the deformation in the magnetic

U(Nf − Nc − 2) description. The complex mass Wmass is mapped to mM
Nf
Nf

, therefore

the magnetic theory has superpotential

Wmag =

Nf∑
i,j=1

M i
j q̃iq

j + M̂+ + M̂− +mM
Nf
Nf

. (3.4)

By the F-term equations, the dual quarks get a VEV: q̃Nf q
Nf = −m. Thus the gauge group

is Higgsed to U(Nf − Nc − 3), we are left with Nf − 1 light flavors and a superpotential

W =
∑
M i

j q̃iq
j + M̂+ + M̂−. This is consistent with the proposed duality.

If we start with Nc+ 3 flavors, the complex mass deformation takes the electric theory

to the line Nf = Nc + 2 flavors. On the magnetic side the U(1) gauge group is completely

Higgsed: we are left with N2
f chiral multiplets, and — because of complete Higgsing —

instanton corrections produce the only superpotential compatible with the symmetries:

W = detM .

We can deform by a complex mass once more. On the electric side we add

mQNc+2Q̃Nc+2, and flow to the theory with Nf = Nc + 1. On the magnetic side we

have superpotential

W = detM +mMNc+2
Nc+2 . (3.5)

The F-terms equations impose that M i
Nc+2 = MNc+2

j = 0 for all i, j and that

det M̃ = −m (3.6)
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where M̃ is the minor complementary to MNc+2
Nc+2. Therefore, a dual description for

Nf = Nc + 1 is in terms of a non-linear sigma model of N2
f chiral superfields M̃ i

j subject

to the constraint (3.6). This could be described through a Lagrange multiplier λ and a

superpotential W = λ(det M̃ +m).

Finally we can add another complex mass to flow on the electric side to U(Nc) with

Nf = Nc flavors. On the magnetic side, the IR dynamics is described by the superpotential

W = λ
(

det M̃ +m
)

+mM̃Nc+1
Nc+1 . (3.7)

The resulting F-term equations do not have any solution and lead to runaway behavior.1

4 UV completions of TM in three dimensions

As we have already mentioned, it is natural to wonder whether TM can also be reached via

more conventional three-dimensional RG flows in addition to the 4D → 3D flow discussed

in section 2.1. We can think of starting with U(Nc) SQCD with Nf flavors, flow to its

fixed point T0, and then turn on the superpotential deformation Wmon (2.3). In order to

do that, the deformation must be relevant and this happens for

R[M±]T0 = Nf

(
1−R[Q]T0

)
−Nc + 1 < 2 , (4.1)

where R[Q]T0 is the superconformal R-charge at the fixed point T0 which depends on Nc, Nf .

The numerical values of R[M]T0 for small Nc, Nf have been computed in [18, 43] and we

report them in the table (4.2) for convenience:

Nf = 1 Nf = 2 Nf = 3 Nf = 4 Nf = 5 Nf = 6 Nf = 7

Nc = 1 2/3 1.18 1.69 2.19 2.69 3.20 3.70

Nc = 2 1/2 0.97 1.46 1.95 2.44 2.94

Nc = 3 0.78 1.24 1.72 2.20

Nc = 4 0.60 1.03 1.50

Nc = 5 0.84

(4.2)

We see that for each Nc, there are just few values for which 1/2 < R(M)T0 < 2.

For large Nc, Nf , [43] found that if Nf . 1.45Nc, then R[M]T0 < 1/2. In those cases

the monopole operators become free decoupled fields in the IR and the superconformal

R-symmetry is not visible in the UV description: it mixes with an IR accidental symmetry.

1Another way to see that for Nf = Nc there is runaway behavior with no supersymmetric vacua is to

use the low energy description of T0 [25] as the Wess-Zumino model of N2
c + 2 chiral multiplets M±, M i

j

with superpotential

W = M+M− detM . (3.8)

The addition of the monopole deformation Wmon = M+ +M− leads to F-term equations with no solutions.

The situation does not improve if we add masses for the flavors. For instance, to reach the case Nf = Nc−1

we add a mass term for QNf , Q̃Nf . In the Wess-Zumino description (3.8) this appears as a superpotential

term Wmass = M
Nf

Nf
. Again the F-term equations do not have solutions.
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Then we cannot deform the IR fixed point, because the deformation Wmon by free fields

would break supersymmetry. Moreover, at the bound Nf ≈ 1.45Nc the R-charge of the

fundamental fields is R[Q]T0 ≈ 1− 1/1.45 ≈ 0.31. If we call Nf,0 the smallest value of Nf

(at fixed Nc) for which R[M±]T0 >
1
2 , then as we increase Nf by a single unit beyond Nf,0

we find that R[M]T0 increases approximately by 1 − R[Q]T0 ≈ 0.69. We conclude that for

large fixed Nc there are only two or three values of Nf for which 1
2 < R[M±]T0 < 2 and

Wmon is a good relevant deformation.

However we can try to start from T0 plus some other decoupled sector, couple them

together and trigger a non-trivial RG flow.

At this point we can stop to make a (partial) analogy with the case of the non-

supersymmetric Gross-Neveu model with N fermions, described by the Lagrangian

Ψ̄I∂ΨI + (Ψ̄IΨ
I)2. This theory has a “UV fixed point”, which cannot be reached from

the CFT of N free fermions since the term (Ψ̄IΨ
I)2 has scaling dimension 4 and is irrel-

evant in the free CFT. However, one can start from N free fermions plus an Ising-CFT

Tσ4 , that is a real scalar σ with σ4 potential at the Wilson-Fisher fixed point, and turn on

the relevant deformation σΨ̄IΨ
I . This is called the Gross-Neveu-Yukawa model. In the

infrared it flows to a fixed point, that we call Gross-NeveuN . Such a fixed point can be fur-

ther deformed by σ2, and the resulting RG flow connects to the Gross-Neveu model (which

describes the leading irrelevant operator along the flow). In this sense, Gross-NeveuN can

be though of as the UV fixed point we were after. We can represent the RG flow as

N free fermions ⊕ Tσ4 Gross-Neveu-Yukawa−−−−−−−−−−−−−−−−−−−−−−→ Gross-NeveuN . (4.3)

The difference with our case of T0 and TM is that, as we explained, there exists an

RG flow Gross-NeveuN → N free fermions, while in our case we do not expect an RG flow

from TM to T0 (for the same values of Nf , Nc). One way to show that would be to verify

that FTM [Nf , Nc] < FT0 [Nf , Nc] (where F is the Euclidean free energy on S3 [47]) and

hence an RG flow from TM to T0 would violate the F -theorem [48, 49]. The inequality

FTM [Nf , Nc] < FT0 [Nf , Nc] follows if one proves that F [Nf , Nc](rQ), where rQ is the R-

charge of the quarks, is concave with a maximum (which corresponds then to T0) in the

physically sensible interval 1
4 ≤ rQ ≤ 1. This can be numerically checked for small values

of Nf , Nc.

We cannot tell what is the exact RG diagram of U(Nc) SQCD with gauge coupling g

and deformation ηWmon, but we can draw the qualitative structure of the minimal topology

that accommodates the features we have described, in the cases that Wmon is irrelevant in

T0 and yet TM exists. This is depicted in figure 3.

For completeness, let us mention here that there is actually an RG flow

TM[Nf + 2, Nc] −→ T0[Nf , Nc] . (4.4)

The idea is to start from the TM = T ′M pair with Nf + 2 flavors and consider the real mass

deformation:

mNf+1 → mNf+1 + t , m̃Nf+1 → mNf+1 − t
mNf+2 → mNf+2 − t , m̃Nf+2 → mNf+2 + t , (4.5)
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η

1/g

TUV

T0

TMTus

Figure 3. Qualitative RG diagram of the supposed minimal flow that can accommodate T0 and TM
in cases that Wmon is irrelevant in T0. Here g is the gauge coupling and η the monopole coupling in

ηWmon. The point TUV is the weakly-coupled U(Nc) SQCD with Nf flavors, T0 is its IR fixed point,

and TM the non-trivial fixed point with monopole deformation turned on. The topology requires

the existence of (at least) one unstable fixed point Tus.

with t → ∞. As we explicitly show at the level of the partition function in section 7.2,

the limit restores the U(1)A × U(1)T and on the electric side we recover T0. On the

dual side the limit also reduces the (Nf + 2) × (Nf + 2) singlets to an Nf × Nf block

which enters the superpotential in a cubic coupling with the dual quarks plus two extra

singlets coupling linearly to the dual monopoles. So on the dual side we recover T ′0 with

W =
∑Nf

a,b M
a
bq̃aq

b + M̂+S− + M̂−S+.

4.1 UV completion in 3D using auxiliary Ising-SCFTs

Going back to the supersymmetric case, let us add to T0 N
2
f copies of the Ising-SCFT, each

consisting of a chiral superfield Φij (i, j = 1, · · ·Nf ) with a cubic superpotential W = Φ3
ij

fixing R[Φij ] = 2/3. We then turn on a cubic superpotential to couple the singlets Φij to

the quarks in T0:

W =

Nf∑
ij=1

(
ΦijQiQ̃j + Φ3

ij

)
. (4.6)

This deformation is relevant since R[Φij ] = 2/3, R[Q]T0 < 1/2 and breaks the continuous

global symmetries SU(Nf )2 ×U(1)A → SNf × SNf , leaving enough discrete symmetries to

set all the R-charges of the quarks equal to each other. This cubic coupling is expected to

trigger an RG flow to the theory T
ΦijQiQ̃j+Φ3

ij
with R[Q] = R[Φij ] = 2/3 and

R[M±] = Nf

(
1−R[Q]

)
−Nc + 1 = Nf

(
1− 2

3

)
−Nc + 1 . (4.7)

More precisely, there are two options for what the flow is. The first one, described

above, leads to the theory T
ΦijQiQ̃j+Φ3

ij
with R[Q] = R[Φij ] = 2/3. The other flow leads to

a theory T
ΦijQiQ̃j

with R[Φij ] > 2/3. We later discuss that if we do not consider enough
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copies of the Ising-SCFT, the first flow can violate the F -theorem, hence the theory must

follow the second flow. With enough Φij it might be possible to use similar arguments to

rule out the second flow, but we will not do it here.

The monopoles do not violate the unitarity bound, i.e. they have R[M±] > 1
2 , if

Nf ≥ 3Nc − 1. If we set Nf = 3Nc + 2 we find

R[M±] = Nf

(
1−R[Q]

)
−Nc + 1 =

5

3
< 2 , (4.8)

so the monopoles in this case are a relevant deformation and we can add M+ +M− to the

superpotential. This further deformation takes us to a theory with R[Q]T = 2Nc+1
3Nc+2 and

R[Φij ] = 2 − 2R[Q] = 2Nc+2
3Nc+2 > 2/3, so the N2

f terms Φ3
ij should actually be dropped. In

order to reach TM we only need to get rid of the N2
f singlet fields Φij . To do so we add

N2
f free chiral fields σij and couple them linearly to the Φij ’s. Both Φij and σij become

massive and integrating them out we finally flow to TM.

Summarizing, for Nf = 3Nc + 2 we have the chain of 3D unitary RG flows

T0 ⊕ TΦ3
ij
⊕ σij → T

ΦijQiQ̃j+Φ3
ij
⊕ σij → T

M+ΦijQiQ̃j
⊕ σij → TM . (4.9)

We can reach theories with less flavors Nf < 3Nc+2 by simply adding complex mass terms

for the quarks.2

The case Nf = 3(Nc + 1): conformal manifold

We could also start from Nf = 3(Nc + 1). In this case, after coupling T0 to the Ising-

SCFTs, R[M±] = 2 so there are two marginal monopole couplings while there are no

mesonic operators of R-charge two. Since the two marginal deformations break only one

U(1) global symmetry (the topological symmetry, while the axial symmetry is already

broken) there is precisely one exactly marginal monopole direction [50–53]. It is natural

to parameterize this exactly marginal deformation by M+ + M−, preserving the charge-

conjugation Z2 symmetry and the SNf × SNf permutation symmetry of the Nf quarks.

Our proposal is that in this 1-complex dimensional3 conformal manifold there is a point

corresponding to TM, where the couplings with Ising-SCFTs are tuned to zero and the

Ising-SCFTs decouple.

There is an analog situation in U(1) with Nf = 1 flavors where the three operators M3,

M−3 and (QQ̃)3 have R = 2. Since these operators break the U(1)T × U(1)A symmetry,

there is one exactly marginal direction given by M3 + M−3 + (QQ̃)3, preserving the Z3

symmetry which is evident in the dual XY Z description where the superpotential becomes:

W = λ1XY Z + λ2(X3 + Y 3 + Z3) , (4.10)

2One could also try to start with the Ising SCFT theory with N + 1 chirals and superpotential W =

ΦN+1

∑N
i=1 φ

2
i . At large N the R-charge of the chirals become R[φi]→ 1/2 and R[ΦN+1]→ 1 respectively.

We could then couple the mesons of the T0 theory to the singlets φi by the cubic superpotential QQ̃(
∑N
i φi).

At large N this term would drag the R-charge of the quarks to R[Q] → 3/4, which in turn would imply

that Wmon remains a relevant deformation for Nf < 4(Nc + 1). One would need to check that there are no

F-theorem violations along this flow as we discuss in the case of single Ising SCFT.
3The dimension of the full conformal manifold is bigger, since we can turn on many cubic couplings of

the form ΦijΦklΦmn and ΦijQkQ̃l, breaking the discrete symmetries.
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with λ1,2 parameterizing a CP1. At the point λ1 = 0 the theory factorizes into three

copies of the Ising-SCFT. This is the analog of the point TM, where the couplings with

Ising-SCFT’s are turned off.

The reason for using N2
f Ising-SCFTs

The reader might wonder why we used N2
f auxiliary fields Φij instead of just one Φ. The

reason is as follows. Imagine that by coupling the N2
f mesons to a single Ising-SCFT we

reach the theory T
ΦQQ̃+Φ3 where R[Q] = R[Φ] = 2/3. At this point we could couple Φ to

a single chiral field σ, integrate Φ and σ out and flow to T0. We claim that this flow can

violate the F -theorem [48, 49] (for a review see [54]) for Nf and/or Nc large enough.

Let FSQCD[r] = − log |ZSQCD| be the S3 free energy of the U(Nc) SQCD with Nf

flavors as a function of the R-charge of the quarks r. FSQCD[r] can be computed via

localization [47, 55, 56] and according to F -maximization [47] it is (locally) maximized at

the value r∗ which is the IR superconformal R-charge. In particular the free energy of a

chiral multiplet of R-charge r is given by the function −`[1 − r] defined in [47], which is

(locally) maximized at the value r∗ = 1/2 corresponding to that of a free 3D chiral field.

Now, consider our hypotetical flow from T
ΦQQ̃+Φ3 ⊕ σ in the UV to T0 in the IR.

FUV = F [T
ΦQQ̃+Φ3 ⊕ σ] = FSQCD[2

3 ] − `[1 − 2
3 ] − `[1 − 1

2 ] (the last two contributions are

due to the chiral Φ and the free chiral σ), while FIR = FSQCD[r∗], so

FUV −FIR = FSQCD[2
3 ]−FSQCD[r∗]− `

[
1− 2

3

]
− `
[
1− 1

2

]
(4.11)

The contribution FSQCD[2
3 ] − FSQCD[r∗] grows in modulus with Nf , Nc and is negative

(since FSQCD[r] is locally maximized at r = r∗ and assuming we are not too far away from

this local maximum), while the contribution −`[1 − 2
3 ] − `[1 − 1

2 ] from the two singlets is

independent of Nf , Nc. Hence, for Nf , Nc large enough, FUV − FIR is negative and the

F -theorem is violated.4

The conclusion is that T
ΦQQ̃+Φ3 does not exists with only one singlet Φ, more precisely

the Φ3 becomes irrelevant and must be dropped when coupling the Ising-SCFT Φ3 to

the mesons of the SQCD. See [57] for an analogous discussion in a cubic Wess-Zumino

model with N + 1 fields. This problem however can be avoided if we add N2
f copies of the

Ising-SCFT Φij .

4.2 Dual 3D RG flows

In this section we study the dual of the chain of RG flows (4.9) to arrive at the dual

theory T ′M. We start from the Aharony dual of U(Nc) with Nf flavors, add N2
f copies of

Ising-SCFTs Φij , and couple the Φij singlets to the dual mesons Mij , which are themselves

gauge singlets:

W =

Nf∑
i,j=1

(
Mij q̃iqj +MijΦij + Φ3

ij

)
+ S+M̂+ + S−M̂− . (4.12)

4For example, for Nc = 2, Nf = 7, one finds F [r∗] = 12.38 and `[ 1
2
] = −0.347 while F [ 2

3
] = 8.75,

`[1− 2
3
] = −0.291, so FUV = 8.75 + 0.291 + 0.347 < FIR = 12.38.
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All the Mij and Φij become massive and integrating them out we are left with a sextic

superpotential in the quarks:

W = −
Nf∑
i,j=1

(qiq̃j)
3 + S+M̂+ + S−M̂− , (4.13)

which sets R[q] = 1
3 , R[M̂±] = −1

3Nf + Nc + 1 and R[S±] = 1
3Nf − Nc + 1. It follows

R[S±] > 1
2 so unitarity is not violated, as long as Nf ≥ 3Nc − 1. The singlets Φij in the

electric theory T
ΦijQiQ̃j+Φ3

ij
are mapped to the mesons qiq̃j in the magnetic theory. The

mesonic chiral ring is truncated (in the magnetic side this is due to the F-terms of qi, q̃j)

in both dual theories.

At this point in the electric side we set Nf = 3Nc + 2 and turned on the deformation

Wmon = M+ + M−, flowing to T
M+ΦijQiQ̃j

. In the magnetic side this corresponds to

turning on W = S+ + S−. This superpotential pushes down to zero R[M̂±] and pushes

up R[q], making the sextic superpotential (qq̃)3 irrelevant, so we must drop the sextic

superpotential. Integrating S± out breaks the magnetic gauge group according to U(Nf −
Nc)→ U(Nf −Nc − 2), which generates a monopole superpotential M̂+ + M̂− in the IR:

W = M̂+ + M̂− . (4.14)

The last step is to linearly couple the Φij in the electric theory to the N2
f singlets σij . In

the magnetic theory this corresponds to coupling the mesons qiq̃j to the singlets σij , ending

up precisely with T ′M:

W =

Nf∑
i,j=1

σij q̃iq
j + M̂+ + M̂− . (4.15)

Summarizing, it is possible to follow the chain of RG flows (4.9) also in the dual description.

We interpret the self-consistency of this picture as a strong hint that the 3D UV completion

is correct and works as described.

4.3 RG flows from TM
We can also explore the possibility of flowing away from TM without changing Nf , Nc. In

TM when the meson has R-charge less than 3/2, i.e. when Nf < 4(Nc + 1), we can turn on

the coupling σijQiQ̃j to N2
f free chirals σij . At the end of this flow R[σij ] = 2Nc+1

Nf
. Now

if Nf > 2(Nc + 1), σ2
ij are relevant deformations, and turning them on fixes R[σij ] = 1,

R[Q] = 1/2 and R[M±] = Nf/2−Nc+1 > 2. So the monopole superpotential has R-charge

greater than 2 and must be dropped and we are left with Tquartic.

Summarizing, for 2(Nc + 1) < Nf < 4(Nc + 1) we have the following chain of 3D

unitary RG flows:

TM ⊕ σij −→ T
M+σijQiQ̃j

−→ T
σijQiQ̃j+σ2

ij
= Tquartic . (4.16)

If 3(Nc + 1) < Nf < 4(Nc + 1), similar arguments show the existence of the RG flows

TM ⊕ σij −→ T
M+σijQiQ̃j

−→ T
σijQiQ̃j+σ3

ij
. (4.17)
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Notice that, for a given Nf and Nc, using the RG flows discussed in this section it is not

possible to go back and forth from TM and Tquartic or T
σijQiQ̃j+σ3

ij
, even adding free chiral

fields or Φ3
ij SCFTs. In the cases Nf = 2(Nc + 1) or Nf = 3(Nc + 1) there are non-trivial

conformal manifolds and we can continuously turn on and off the monopole superpotential.

5 TM as the S-duality wall for 4D N = 2 SQCD

In this section we will see how the theory TM with Nf = 2Nc + 2 can be identified with

the S-duality wall for the 4D N = 2 SQCD. In the context of the AGT correspondence

relating Toda correlators to S4 partition functions of class-S theories [42], 3D S-duality

walls were conjectured to be mapped to the elements of the Moore-Seiberg groupoid [58]

acting on the conformal blocks [59]. In particular, a 3D interface theory can be placed on

the three-sphere at the equator of the S4, separating the two hemispheres where the 4D

theories have coupling related by a generalized S-duality and the S3
b partition function of

the interface theory is conjectured to be equal to the CFT kernel implementing the action

of the Moore-Seiberg groupoid element.

The duality kernels in Liouville theory were obtained in [60, 61]. The S-kernel was

shown to perfectly match with the S3
b partition function of the mass deformed TSU(2)

theory [62]. The interpretation of the Liouville F -kernel as a domain wall theory, instead,

has created some troubles. The matter content was immediately identified (U(1) with

Nf = 4 flavors) but the identification required to impose various constraints on the real

mass parameters and the origin of these constraints was not explained. Indeed, using

various integral identities, in [34] the Liouville F -kernel was rewritten in a form that could

be mapped to an SU(2) partition function with no mass constraints.

In Toda CFT the braiding kernel for the 4-point block with two semi-degenerate vertex

operators has recently been derived by Le Floch in [39]. From the explicit form of the kernel

it is easy to read out the matter content of the interface theory which was identified as a

U(N − 1) theory with 2N chirals of charge 1 and 2N chiral of charge −1. This theory is

supposed to be self-dual and this property at the level of partition function follows from an

integral identity. However, as in the Liouville case, the identification requires to impose a

constraint on the real mass parameters associated to the topological and axial symmetries

U(1)T ×U(1)A. It is also necessary to fix the R-charges of the quarks R[q] to 1
2 , which [39]

conjectured to follow by the cubic coupling of the 3D quarks to the 4D hypers.

Here we point out that the 3D S-duality wall theory is actually TM, the theory analyzed

in this paper, in the case Nf = 2(Nc+1). The monopole superpotentialWmon = M+ +M−

sets R[q] = 1
2 with no need of the cubic coupling to the 4D hypers and it breaks the

U(1)T ×U(1)A symmetries, implying that the corresponding real mass deformations cannot

be turned on. The self-duality property of this theory is then a particular case of our

TM = T ′M duality.

6 Higher monopole superpotentials

It is also interesting to consider superpotentials containing non-minimal chiral monopole

operators. In the non-SUSY case, potentials of the type Mk+(M†)k with k = 2, 3, 4, where
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M is now the minimal monopole, can arise in the thermodynamic limit of spin-models on

lattices with Zk rotational symmetries (i.e. rectangular, honeycomb and square lattices),

see for instance [6].

In this section we briefly discuss 3D UV completions of the U(Nc) SQCD with a

superpotential quadratic or cubic in the basic monopole operators: W = M+2 + M−2 and

W = M+3 + M−3. We leave a more exhaustive analysis of the dynamics of these theories,

including the discussion of their chiral rings and study of their potential derivation from

4D, for future work.

6.1 W = M+2 + M−2

Let us denote by TM2 the SQCD with monopole superpotentialW = M+2+M−2. Imposing

the marginality of the superpotential R[W] = 2 we get

2R[M±] = 2 ⇒ R[Q] =
Nf −Nc

Nf
. (6.1)

The unitarity bound for the meson is satisfied if

2R[Q] >
1

2
⇒ Nf >

4

3
Nc . (6.2)

Proceeding as in section 4.1 we can find a 3D UV completion. We couple T0 to N2
f

copies of the Ising-SCFT through the cubic coupling, which sets R[Q] = 2
3 . We take

Nf = 3Nc − 1 which (with R[Q] = 2
3) gives R[M±] = 2

3 . The superpotential deformation

W = M+2 + M−2 is relevant and can be turned on. This takes us to a theory with

R[Q] = 2Nc−1
3Nc−1 and R[Φij ] = 2Nc

3Nc−1 >
2
3 , so the N2

f terms Φ3
ij should actually be dropped

from the superpotential. Finally, to reach TM2 we get rid of the N2
f singlet fields Φij by

coupling them linearly to N2
f free chiral fields σij . Both Φij and σij become massive and

integrating them out we finally flow to TM2 . Giving masses to some quarks, we have a 3D

UV completion for TM2 for all 4
3Nc < Nf < 3Nc.

We propose that an Aharony-Seiberg duality for TM2 works as follows:

TM2 : U(Nc) SQCD with Nf flavors, W = (M+)2 + (M−)2 (6.3)

and

T ′M2 : U(Nf −Nc) SQCD with Nf flavors qi, q̃i and N2
f singlets M i

j ,

W =

Nf∑
i,j=1

M i
j q̃iq

j + (M̂+)2 + (M̂−)2 .
(6.4)

To arrive at this duality one can start from the Aharony duality and turn on the quadratic

monopole superpotential on the electric side. On the magnetic side this amounts to turning

on the superpotential (S+)2 + (S−)2 where the singlets S± enter the superpotential as

M̂+S− + M̂−S+. Using the equations of motion for the two singlets S± we obtain the

quadratic terms M̂+2 + M̂−2 in the monopoles of the magnetic theory.
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As a consistency check we can study the dual of the RG flow as in section 4.2 to arrive

to the dual theory T ′M2 . Adding the Ising-SCFTs to the Aharony dual of U(Nc) with Nf

flavors and coupling the singlets Φij to the dual mesons Mij we obtain the theory with

sextic superpotential in the quarks. In this theory the R-charges are set to R[q] = 1
3 ,

R[M̂±] = −1
3Nf +Nc + 1 and R[S±] = 1

3Nf −Nc + 1. Paralleling the steps on the electric

side we set Nf = 3Nc−1 and turn on the dual of the quadratic monopole deformationW =

(S+)2 + (S−)2. This superpotential pushes up the quark R-charges (R[q] > 1/3) making

the sextic superpotential (qq̃)3 irrelevant. Integrating S± out generates the monopole

superpotential (M̂+)2 + (M̂−)2 in the IR. The last step is to linearly couple the singlets

Φij in the electric theory to the N2
f singlets σij . On the magnetic side this corresponds to

turning the coupling σijqiq̃j , hence we end up precisely with T ′M2 .

6.2 W = M+3 + M−3

We close this section with a brief discussion of the cubic monopole superpotential. Let us

denote by TM3 the SQCD with monopole superpotential W = M+3 + M−3. Imposing the

marginality of the superpotential R[W] = 2 we get

R[M±] =
2

3
⇒ R[Q] = 1−

Nc − 1
3

Nf
, (6.5)

and the unitarity bound for the meson is satisfied when

2R[Q] >
1

2
⇒ Nf >

4

3

(
Nc −

1

3

)
. (6.6)

As in quadratic monopole case, we can find a 3D UV completion by coupling T0 to N2
f Ising-

SCFTs. For Nf = 3Nc−1 there is a conformal manifold where the monopole superpotential

W = M+3 + M−3 is exactly marginal. Giving masses to some quarks, we have a 3D UV

completion for TM3 for all 4
3(Nc − 1

3) < Nf < 3Nc.

7 S3
b partition functions: dualities as integral identities

In this section we check the duality TM = T ′M as well as consider various real mass de-

formations, at the level of the squashed three-sphere partition function ZS3
b

which can be

computed via SUSY localisation as shown in [44, 47, 55] (for a review see [63]). Each chiral

multiplet of R-charge r and real mass m for its U(1) flavor symmetry, contributes to the

partition function as

Zchiral = sb

(
iQ

2
(1− r)−m

)
with sb(x) =

∏
l,n≥0

lb+ nb−1 + Q
2 − ix

lb+ nb−1 + Q
2 + ix

, (7.1)

where Q = b+ b−1 and b is the squashing parameter. The partition function of an N = 2

theory with gauge group G and Nf chiral multiplets is given by the following integral over

the Coulomb branch parameter σ:

Z =
1

|W |

∫ rG∏
j=1

dσj e
2πiξTr(σ) eπikTr(σ2)

∏Nf
a=1 sb

(
iQ
2 (1− ra)− ρa(σ)− φa(M)

)
∏
α sb
( iQ

2 ± α(σ)
) , (7.2)
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where we used the shorthand notation sb(a ± b) = sb(a + b) sb(a − b). In (7.2) |W | is the

order of the Weyl group, α are the roots of the gauge group, ρa, φa are the weights of the

representations of the gauge and flavor groups. We also introduced the R-charges ra and

the real masses M for the flavor symmetry. The quadratic exponential is the contribution

to the partition function of a level k Chern-Simons coupling. In the presence of U(1) factors

one can also turn on the Fayet-Iliopoulos coupling ξ.

7.1 U(Nc) with Nf flavors and W = M+ + M−, and its dual

In this section we check at the level of the S3
b partition function the derivation of the

duality TM = T ′M from the 4D Intriligator-Pouliot duality discussed in section 2.1. The

compactified Intriligator-Pouliot duality discussed in [26] relates T1 the USp(2Nc) theory

with 2Nf fundamental flavors and monopole superpotentialW1 = M and T2 the USp(2Nf−
2Nc−4) theory with 2Nf fundamental flavors and superpotentialW2 =

∑
a<bM

abqaqb+M̂.

At the level of partition functions the duality is expressed by the equality Z1 = Z2 where:

Z1 =
1

2NcNc!

∫ Nc∏
j=1

dσj

∏Nc
j=1

∏Nf
a=1 sb

( iQ
2 ± σj −ma

)∏Nf
b=1 sb

( iQ
2 ± σj − m̃b

)∏Nc
i<j sb

( iQ
2 ± (σj + σi)

)
sb
( iQ

2 ± (σj − σi)
)∏Nc

j=1 sb
( iQ

2 ± 2σj
) ,
(7.3)

where we turned on real masses (m1, · · ·mNf , m̃1, · · · m̃Nf ) for the flavor symmetry. The

monopole superpotential imposes the constraint:

Nf∑
a=1

ma +

Nf∑
b=1

m̃b = iQ(Nf −Nc − 1) . (7.4)

The partition function of the dual theory is

Z2 =
1

2N ′cN ′c!

Nf∏
a<b

sb

(
iQ

2
− (ma+mb)

)
sb

(
iQ

2
− (m̃a+m̃b)

) Nf∏
a,b=1

sb

(
iQ

2
− (ma+m̃b)

)

×
∫ N ′c∏

j=1

dσj

∏N ′c
j=1

∏Nf
a=1 sb(ma ± σj)

∏Nf
b=1 sb(m̃b ± σj)∏N ′c

i<j sb
( iQ

2 ± (σj + σi)
)
sb
( iQ

2 ± (σj − σi)
)∏N ′c

j=1 sb
( iQ

2 ± 2σj
) , (7.5)

where N ′c = Nf −Nc − 2. Now we consider a limit on the real mass deformation

mi → mi + s , m̃i → m̃i − s , i = 1 , · · · , Nf , (7.6)

with s→∞ and focus on the vacuum corresponding to the saddle point at infinity. To do

so we first observe that since the integrands are symmetric we can rewrite the integrals as:

∫ +∞

−∞

Nc∏
i=1

dσi f(σi) = 2Nc
∫ +∞

0

Nc∏
i=1

dσi f(σi) = 2Nc
∫ +∞

−s

Nc∏
i=1

dxi f(xi + s) . (7.7)
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The matter contribution to the electric integrand is given by

Nc∏
j=1

Nf∏
a=1

sb

(
iQ

2
+ xi −ma

) Nf∏
b=1

sb

(
iQ

2
− xi − m̃b

)

×
Nc∏
j=1

Nf∏
a=1

sb

(
iQ

2
− xi −ma − 2s

) Nf∏
b=1

sb

(
iQ

2
+ xi − m̃b + 2s

)
, (7.8)

the limit splits the 2Nf chirals in the fundamental of USp(2Nc) into a finite part corre-

sponding to Nf chirals in the fundamental of U(Nc) and Nf chirals in the anti-fundamental

of U(Nc). The remaining flavors have infinite mass and can be integrated out. Similarly the

vector multiplet contribution splits into a massless part coinciding with the U(Nc) vector

multiplet contribution and two extra massive parts:

Nc∏
i<j

sb

(
iQ

2
± (xj − xi)

) Nc∏
i<j

sb

(
iQ

2
± (xj + xi)± 2s

) Nc∏
j=1

sb

(
iQ

2
± 2xj ± 2s

)
. (7.9)

To take the limit we use the asymptotic behavior:

lim
x→±∞

sb(x) ∼ e±iπ
x2

2 , (7.10)

and find

lim
s→∞

Z1 =
1

Nc!
e−πsQNc(Nc+1) e

iπ
2

(
Nc
∑Nf
a=1(m̃2

a−m2
a+iQ(ma−m̃a))

)

×
∫ Nc∏

j=1

dxj

∏Nc
j=1

∏Nf
a=1 sb

( iQ
2 + xj −ma

)∏Nf
b=1 sb

( iQ
2 − xj − m̃b

)∏Nc
i<j sb

( iQ
2 ± (xj − xi)

) . (7.11)

To simplify the exponential prefactor we used the following relation:
∑Nc

i<j(2s+xi +xj) =

Nc(Nc − 1)s+ (Nc − 1)
∑Nc

j=1 xj and imposed the condition (7.4).

The limit on the magnetic side produces a finite contribution to the integrand which

can be identified with that of a U(N ′c = Nf −Nc− 2) theory with Nf fundamental flavors:

lim
s→∞

Z2 =
FM
N ′c!

e−πsQN
′
c(N

′
c+1) e

iπ
2
N ′c
∑Nf
a=1(m2

a−m̃2
a)

×
∫ N ′c∏

j=1

dxj

∏N ′c
j=1

∏Nf
a=1 sb(ma + xj)

∏Nf
b=1 sb(m̃b − xj)∏N ′c

i<j sb
( iQ

2 ± (xj − xi)
) . (7.12)

We also have the contribution of the singlets:

FM = lim
s→∞

Nf∏
a<b

sb

(
iQ

2
− (ma +mb)− 2s

)
sb

(
iQ

2
− (m̃a + m̃b) + 2s

)

×
Nf∏
a,b=1

sb

(
iQ

2
− (ma + m̃b)

)

=

Nf∏
a,b=1

sb

(
iQ

2
− (ma + m̃b)

)
e−

iπ
2

∑
a<b(ma+mb+m̃a+m̃b−iQ)(ma+mb−m̃a−m̃b)

× eπQs(Nf−1)(Nf−2Nc−2) , (7.13)
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which can be further simplified using that:∑
a<b

(ma +mb + m̃a + m̃b − iQ)(ma +mb − m̃a − m̃b)

= −iNc

Nf∑
a=1

(ma − m̃a) + (Nf − 2)

Nf∑
a=1

(m2
a − m̃2

a) . (7.14)

When we equate (7.11) = (7.12) the divergent exponential prefactors, the dominant con-

tributions to the saddles on the two sides, are equal and cancel out:

lim
s→∞

Z1 ∼ e−πsQNc(Nc+1) = eπQs(Nf−1)(Nf−2Nc−2)e−πsQN
′
c(N

′
c+1) ∼ lim

s→∞
Z2 . (7.15)

We are then sure that we are comparing the same vacuum on the two side of the duality.

The finite prefactors cancel-out too and in the end the equality (7.11) = (7.12) yields:

ZTM =
1

Nc!

∫ Nc∏
j=1

dxj

∏Nc
j=1

∏Nf
a=1 sb

( iQ
2 + xj −ma

)∏Nf
b=1 sb

( iQ
2 − xj − m̃b

)∏Nc
i<j sb

( iQ
2 ± (xj − xi)

)
=

1

N ′c!

Nf∏
a,b=1

sb
( iQ

2
− (ma + m̃b)

)
×
∫ N ′c∏

j=1

dxj

∏N ′c
j=1

∏Nf
a=1 sb(ma + xj)

∏Nf
b=1 sb(m̃b − xj)∏N ′c

i<j sb
( iQ

2 ± (xj − xi)
) = ZT ′M .

(7.16)

We identified ZTM as the partition function of TM, the U(Nc) theory with Nf flavors

and W = M+ + M− potential which breaks U(1)T × U(1)A. Indeed there are no real

masses turned on for these symmetries since there is no FI term and the masses satisfy the

constraint (7.4). Similarly we identify ZT ′M as the partition function of the dual theory T ′M,

the U(Nf −Nc − 2) theory with Nf flavors and W = M̂+ + M̂− +
∑Nf

a,b M
a
bq̃aq

b. Indeed

we also see the contribution of the N2
f singlets Ma

b with masses (ma + m̃b). This is test at

the level of the partition function of our TM = T ′M duality.

For Nf = Nc + 2 the integral in the magnetic theory disappears and, as expected

from the discussion in section 3.2, we find N2
f chiral singlets interacting with superpoten-

tial det(M).5

7.2 Real mass deformation to the Aharony duality

A further consistency of the TM = T ′M duality is to show that it reduces to the Aharony

duality with a suitable real mass deformation. We start with Nf + 2 flavors and consider

5As observed in [64] the convergence of 3D partition functions is controlled by the dimensions of the

fundamental monopoles. In particular the asymptotic behavior in the electric theory is given by e−R[M±]x

while in the magnetic theory it is given by e−R[M̂±]x. In our case, since the monopoles enter the super-

potential and are exactly marginal, both ZTM and ZT ′
M

remain convergent even when we enter the region

Nc + 3 ≤ Nf ≤ 4
3
(Nc + 1) where the dual mesons become free. This has to be contrasted with the behavior

discussed in [43].
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the following deformation:

mNf+1 → mNf+1 + t , m̃Nf+1 → mNf+1 − t ,
mNf+2 → mNf+2 − t , m̃Nf+2 → mNf+2 + t , (7.17)

with t → ∞. By defining η = 2mNf+1 + 2mNf+2 and ξ = 2mNf+1 − 2mNf+2, the mass

constraint (7.4) becomes:

Nf∑
a,b=1

(ma + m̃b) + η = 2ω(Nf −Nc + 1) . (7.18)

Since η is a free parameter, this constraint is lifted. By using the asymptotics (7.10)

the limit of the electric side of the identity (7.16) with Nf + 2 flavors, in the trivial

vacuum, becomes:

eπiNct(2iQ−η)

Nc!

∫ Nc∏
j=1

dxj

∏Nc
j=1

∏Nf
a=1 e

πi(
∑
j xj)ξsb

( iQ
2 + xj −ma

)∏Nf
b=1 sb

( iQ
2 − xj − m̃b

)∏Nc
i<j sb

( iQ
2 ± (xj − xi)

) .

(7.19)

Up to the divergent factor this is the partition function of a U(Nc) theory with Nf flavors

and W = 0. Indeed the constraint on the masses is lifted and ξ enters as an FI parameter,

we have then restored the U(1)T × U(1)A symmetries. By taking the same limit on the

magnetic side of (7.16) we find:

eπi(Nf−Nc)tη e
−2πit

(∑Nf
j=1(mj+m̃j)+(2+Nf )(mNf+1+mNf+2)−iQ(Nf+1)

)

× eπi(mNf+1−mNf+2)
∑Nf
j (mj−m̃j)sb

(
iQ

2
− 2mNf+2

)
sb

(
iQ

2
− 2mNf+1

)

×
Nf∏
a,b=1

sb

(
iQ

2
− (ma + m̃b)

)
1

(Nf −Nc)!

×
∫ Nf−Nc∏

j=1

dxj e
πiξ

∑
j xj

∏Nf−Nc
j=1

∏Nf
a=1 sb(ma + xj)

∏Nf
b=1 sb(m̃b − xj)∏Nf−Nc

i<j sb
( iQ

2 ± (xj − xi)
) . (7.20)

The leading contributions to the saddle points in (7.19) and (7.20) when using (7.18) are

equal and cancel out. The finite exponentials also simplify and cancel out. It is convenient

to introduce the following parametrisation:

ma = µa −Ma , m̃a = µa +Ma ,
∑

a
Ma = 0 , (7.21)

with

η = iQ(Nf −Nc + 1)− 2

Nf∑
a=1

µa , (7.22)
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in the Cartan of the global flavor symmetry SU(Nf )Ma × SU(Nf )ma ×U(1)η, which allows

us to rewrite the equality of eqs. (7.19) and (7.20) as:

1

Nc!

∫ Nc∏
j=1

dxj

∏Nc
j=1

∏Nf
a=1 e

πiξ
∑
j xj sb

( iQ
2 ± (xj +Ma)− µa

)∏Nc
i<j sb

( iQ
2 ± (xj − xi)

)
= sb

(
iQ

2
−
iQ(Nf −Nc + 1)− 2

∑
a µa ± ξ

2

) Nf∏
a,b=1

sb

(
iQ

2
− (µa + µb −Ma +Mb)

)

× 1

(Nf −Nc)!

∫ Nf−Nc∏
j=1

dxj e
πiξ

∑
j xj

∏Nf−Nc
j=1

∏Nf
a=1 sb

(
± (xj −Ma) + µa

)∏Nf−Nc
i<j sb

( iQ
2 ± (xj − xi)

) . (7.23)

By looking at the real masses appearing in the double sine functions on the magnetic

side, we see that besides the Nf × Nf singlets with masses (µa + µb −Ma + Mb) there

are two extra singlets with R-charge (Nf − Nc + 1) and topological charge ±1 which can

be identified with the singlets S± entering the superpotential of the dual theory W =∑Nf
a,b M

a
bq̃aq

b + M̂+S− + M̂−S+. We have thus shown that our duality reduces to the

Aharony duality (7.23).

8 U(Nc) with Nf flavors and W = M− and its dual

In this section we show that a suitable real mass deformation of the TM = T ′M duality allows

us to derive a new duality involving the U(Nc) theory with Nf flavors with a superpotential

involving only one monopole operator W = M±. We start from TM = T ′M with Nf + 1

flavors and consider the real mass deformation

mNf+1 → mNf+1 + t , m̃Nf+1 → mNf+1 − t , (8.1)

with t→∞. By defining η = 2mNf+1 the mass constraint (7.4) becomes

Nf∑
a,b=1

(ma + m̃b) + η = Q(Nf −Nc) , (8.2)

and it is lifted since η is a free parameter. By using the asymptotics (7.10), the limit of

the electric side of the identity (7.16) in the trivial vacuum yields

eπiNct(iQ−η)

Nc!

∫ Nc∏
j=1

dxj e
πi(η−iQ)

∑
j xj

∏Nc
j=1

∏Nf
a=1 sb

( iQ
2 +xj−ma

)∏Nf
b=1 sb

( iQ
2 −xj−m̃b

)∏Nc
i<j sb

( iQ
2 ± (xj − xi)

) .

(8.3)

Apart from the divergent exponential prefactor, the leading contribution to the saddle

point is the partition function of a U(Nc) theory with Nf flavors and W = M−. This

monopole superpotential removes M− but leaves M+ in the chiral ring and breaks the

U(1)T ×U(1)A symmetry to the diagonal, indeed the FI parameter and the axial mass are
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not independent. By taking the same limit on the magnetic side of (7.16) we find:

eπi(Nf−Nc−1)tη e
πit

(
−
∑Nf
j (mj+m̃j)−η−(Nf−1)η+iQNf

)

× e
πi
∑Nf
j

(
(m2
j−m̃

2
j )

2
+(mj−m̃j)(η−iQ)

)
sb

(
iQ

2
− η
)

×
Nf∏
a,b=1

sb

(
iQ

2
− (ma + m̃b)

)
1

(Nf −Nc − 1)!

×
∫ Nf−Nc−1∏

j=1

dxj e
πiη

∑
j xj

∏Nf−Nc−1
j=1

∏Nf
a=1 sb(ma + xj)

∏Nf
b=1 sb(m̃b − xj)∏Nf−Nc−1

i<j sb
( iQ

2 ± (xj − xi)
) . (8.4)

Importantly, the divergent prefactor in (8.4) — i.e. the leading contribution to the magnetic

saddle — equals the electric one in (8.3):

eπiNct(iQ−η) = eπi(Nf−Nc−1)tη e
πit

(
−
∑Nf
j (mj+m̃j)−η−(Nf−1)η+iQNf

)
, (8.5)

and we are then sure that we are comparing the same vacuum on the two side of the

duality. Some finite exponential prefactors cancel out too. Again we can introduce the

parameterisation (7.21) with the constraint becoming:

η = iQ(Nf −Nc)− 2

Nf∑
a=1

µa , (8.6)

and by equating eqs. (8.3) and (8.4) we arrive to the following identity:

Z1 =
1

Nc!

∫ Nc∏
j=1

dxj

∏Nc
j=1

∏Nf
a=1 e

πi(
∑
j xj)(η−iQ)sb

( iQ
2 ± (xj +Ma)− µa

)∏Nc
i<j sb

( iQ
2 ± (xj − xi)

)
= e−2πi

∑Nf
a Maµasb

(
iQ

2
− η
) Nf∏
a,b=1

sb

(
iQ

2
− (µa + µb −Ma +Mb)

)

× 1

(Nf −Nc − 1)!

∫ Nf−Nc−1∏
j=1

dxj e
πiη

∑
j xj

∏Nf−Nc−1
j=1

∏Nf
a=1 sb

(
± (xj −Ma) + µa

)∏Nf−Nc−1
i<j sb

( iQ
2 ± (xj − xi)

)
= Z2 . (8.7)

On the dual side we have a U(Nf − Nc − 1) theory with Nf flavors. We also have N2
f

singlets Mab with masses (µa + µb −Ma +Mb) and a singlet S+ whose contribution to the

partition function is:

sb

(
iQ

2
− η
)

= sb

(
iQ

2
− η

2
− η

2

)
= sb

(
iQ

2
−
iQ(Nf −Nc)− 2

∑Nf
a µa

2
− η

2

)
. (8.8)

From here we see that S+ has topological charge 1 and R-charge Nf −Nc and enters the

superpotential as S+M̂−. Also on the dual side we see that the U(1)T ×U(1)A symmetry is
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broken to the diagonal, indeed we still have the constraint (8.6) relating the FI parameter

η and the total axial mass
∑

a µa. This is consistent with the presence of a linear monopole

term in the superpotential.

So we propose that the duality expressed by the identity (8.7) relates

T1 : U(Nc) SQCD with Nf flavors ,W = M− (8.9)

and

T2 : U(Nf −Nc − 1) SQCD with Nf flavors, N2
f singlets ,

W = M̂+ + M̂−S+ +
∑Nf

i,j=1M
i
j q̃iq

j . (8.10)

An analogous duality can be obtained by taking the real mass deformation (8.1) with

t→ −∞: it relates U(Nc) with Nf flavors andW = M+ to U(Nf −Nc−1) with Nf flavors

and W = M̂− + M̂+S− +
∑Nf

i,j=1M
i
j q̃iq

j .

In the case Nf = Nc+ 1 the dual theory has no integration on the dynamical variables

so the dual theory has no gauge group and we propose that it can be described by N2
f + 1

singlets interacting with W = S+ det(M). This duality for Nc = 1, Nf = 2 has been

discussed in [38].

8.1 Chiral real mass deformation: Chern-Simons theories

We can generate dualities with Chern-Simons couplings starting from the duality with

one monopole (8.9)–(8.10) and considering suitable real mass deformations.6 For example

in (8.7) we can consider the deformation

µa → µa , Ma →Ma + s , a 6= i , Mi →Mi − (Nf − 1)s , µi → µi +Nfs ,

η → η − 2Nfs , s→∞ , (8.11)

which preserves the constraint (8.6). On the electric side we consider the vacuum where

one of the chirals gets a large mass, to do so we shift the Cartan variables xj → xj − s so

that only the i-th chiral can be integrated out and generates a half Chern-Simons coupling:

sb

(
iQ

2
+ xj +Mi − µi − 2Nfs

)
→ e−

iπ
2 ( iQ2 +xj+Mi−µi−2Nf s)

2

. (8.12)

Taking the s → ∞ limit on the electric side of (8.7) yields a divergent prefactor eAs
2+Bs,

where A is just a numerical coefficient depending on Nf , Nc and B a linear combination of

the mass parameters and a finite part:

lim
t→∞

Z1 ∼
eAs

2+Bs

Nc!

∫ Nc∏
j=1

dxj e
− iπ

2
(
∑
j x

2
j ) eπi(

∑
j xj)(η−Mi+µi− 3iQ

2 )

×
∏Nc
j=1 sb

( iQ
2 − xj −Mi − µi

)∏Nf
a 6=i sb

( iQ
2 ± (xj +Ma)− µa

)∏Nc
i<j sb

( iQ
2 ± (xj − xi)

) . (8.13)

6The Chern-Simons coupling induces a gauge charge for one of the two fundamental monopoles and only

one gauge-invariant fundamental monopole can be added to the superpotential.
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The coefficient eAs
2+Bs is the leading contribution to the saddle point of the electric parti-

tion function we are focusing on and we need to single out the same vacuum with the same

leading contribution on the magnetic side. This can be done by shifting xj → xj + s on

the magnetic side so that the i-th chiral is integrated out generating a half Chern-Simon

coupling with opposite sign:

sb
(
xj −Mi + µi + 2Nfs

)
→ e

iπ
2

(xj−Mi+µi+2Nf s)
2
. (8.14)

The leading contribution to saddle point now gets contributions also from the exponential

prefactors and from the singlets on the magnetic side of (8.7). By a tedious but straight-

forward computation we obtain the same divergent coefficient eAs
2+Bs we found on the

electric side multiplying a finite part:

lim
t→∞

Z2 ∼ eAs
2+Bs

∏
a 6=i

sb

(
iQ

2
−(µa+µi−Ma+Mi)

) Nf∏
a,b 6=i

sb

(
iQ

2
−(µa+µb−Ma+Mb)

)

× 1

(Nf −Nc − 1)!

∫ Nf−Nc−1∏
j=1

dxj e
iπ
2

(
∑
j x

2
j ) eπi(

∑
j xj)(η−Mi+µi)

×
∏Nf−Nc−1
j=1 sb(−xj +Mi + µi)

∏Nf
a 6=i sb

(
± (xj −Ma) + µa

)
∏Nf−Nc−1
i<j sb

( iQ
2 ± (xj − xi)

) . (8.15)

In conclusion, since the electric and magnetic saddles that we have singled out have the

same leading asymptotics, we propose to compare those two isolated vacua. This gives a

new duality7 expressed by the identity (8.13) = (8.15) which relates:

U(Nc) 1
2

with (Nf , Nf − 1) fund/antifund chirals , W = M− (8.16)

and

U(Nf −Nc − 1)− 1
2

with (Nf , Nf − 1) fund/antifund, Nf (Nf − 1) singlet chirals,

W = M̂+ +
∑Nf

i

∑Nf−1
j M i

j q̃iq
j . (8.17)

The linear terms in the monopole break U(1)A × U(1)T to the diagonal. Indeed the con-

straint (8.6) relating the FI and the axial mass is still preserved.

This duality can be easily generalized by giving mass to 2k charge −1 chirals, leading

to the family of dualities:

U(Nc) k
2

with (Nf , Nf − k) fund/antifund chirals , W = M− (8.18)

and

U(Nf −Nc − 1)− k
2

with (Nf , Nf − k) fund/antifund, Nf (Nf − k) singlet chirals,

W = M̂+ +
∑Nf

i

∑Nf−k
j M i

j q̃iq
j (8.19)

which provide a generalization with monopole superpotential of the dualities discussed

in [18].

7We are omitting some finite exponential coefficients, the contribution of background Chern-Simons

terms.
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A The Abelian case

In the Abelian case, Nc = 1, we have at our disposal Abelian mirror symmetry [25, 45],

and in the mirror it is easier to understand the effect of the monopole deformation. The

mirror of the SQED with Nf flavors and W = 0 [25] is T mirror
0 , a U(1)Nf−1 gauge theory

with 3Nf chiral multiplets Φi, qi, q̃i, i = 1, . . . , Nf , described by the quiver diagram

1 1 . . . 1 1︸ ︷︷ ︸
Nf−1

and with superpotential W =
∑Nf

i=1 Φiqiq̃i.

In order to reach the mirror of TM, that we call T mirror
M , we add to the superpotential

the mirror dual of the chiral operator Wmon, namely
∏
i qi +

∏
i q̃i. The full superpotential

of T mirror
M reads

Wmirror
M =

Nf∑
i=1

Φiqiq̃i +

Nf∏
i=1

qi +

Nf∏
i=1

q̃i . (A.1)

For Nf ≤ 3 the operator Wmon is relevant, while for Nf > 3 the Wmon is irrelevant.

This is true, obviously, both in T0 and in T mirror
0 . Yet, it is possible to go beyond Nf = 3

in the mirror. In fact it is possible to reach T mirror
M by first turning on the Nf − 1 gauge

couplings (this step decreases the R-charges of the 2Nf charged chiral fields), then turning

onWmon =
∏
qi+

∏
q̃i, and as a third step coupling the mesons qiq̃i to the singlets Φi. An

F -maximization computation shows that the second step is possible as long as Nf < 6.8

8One can see analytically that it is impossible for Wmon =
∏
qi +

∏
q̃i to be relevant for Nf ≥ 6. The

U(1)Nf−1 gauge theory with gauge couplings turned on and no singlets is mirror to a U(1) gauge theory with

Nf flavors Qi, Q̃j , Nf singlets φi and W =
∑Nf

i=1 φiQiQ̃i. This theory can be thought of a collection of Nf
XYZ models coupled by a U(1) gauge field. The R-charges of the XYZ models are all 2

3
, then adding a gauge

interaction decreases a bit the R-charges of the 2Nf charged fields Qi, Q̃i while increasing the R-charge

of the singlets φi. Under the mirror map, the singlets φi are mapped to the mesons qiq̃i in the U(1)Nf−1

theory. Hence the mesons have dimension higher than 2
3
, ∆[qiq̃i] >

2
3
, and so ∆

[∏
qi +

∏
q̃i
]
>

Nf

3
, which

for Nf ≥ 6 is certainly beyond the relevance bound ∆ = 2.
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From F -maximization we obtain the dimensions

Nf 2 3 4 5

∆
[∏

qi +
∏
q̃i
]

0.82 1.14 1.48 1.81
(A.2)

So in this range we expect that T mirror
M with superpotential (A.1) can be reached from the

free theory without adding additional degrees of freedom.

The mesonic chiral ring (or Higgs branch) of the mirror, given by gauge invariant

operators built out of the qi, q̃i, consists at most of a single point: the F-term relations set

qiq̃i = 0 as well as
∏
i qi =

∏
i q̃i = 0. Thus the chiral ring of the mirror is generated by Φi

and the BPS monopole operators only. In terms of the original theory TM with Nc = 1, it

means that we only have the Higgs branch as expected.

For Nf = Nc = 1, the mirror is simply the Wess-Zumino model with superpotential

Wmirror
Nc=Nf=1 = Φqq̃ + q + q̃ with no supersymmetric vacua. If Nf = 2, the mirror is a U(1)

theory with two flavors and two extra singlets, and superpotential given by Wmirror =

Φ1q1q̃1 + Φ2q2q̃2 +m(q1q2 + q̃1q̃2). In particular the monopole deformation appears in the

mirror as a mass deformation, and we have introduced a coupling m. The Coulomb branch

of this theory [25] is described by the quantum relation

N+N− = detM = Φ1Φ2 −m2 , (A.3)

where N± are the monopoles of the mirror theory and M =
(

Φ1 m
m Φ2

)
is the mass matrix

of the quarks. Given the identifications Φi = M i
i, N+ = M1

2 and N− = M2
1 (where

M i
j = qiq̃j) through mirror symmetry, in terms of the variables of the original theory

that is

detM = m2 , (A.4)

which is a quantum deformation of the classical Higgs branch detM = 0. This is in

agreement with the results of section 3.3.
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