82 research outputs found

    EXPLORATION, NORMALIZATION, AND GENOTYPE CALLS OF HIGH DENSITY OLIGONUCLEOTIDE SNP ARRAY DATA

    Get PDF
    In most microarray technologies, a number of critical steps are required to convert raw intensity measurements into the data relied upon by data analysts, biologists and clinicians. These data manipulations, referred to as preprocessing, can influence the quality of the ultimate measurements. In the last few years, the high-throughput measurement of gene expression is the most popular application of microarray technology. For this application, various groups have demonstrated that the use of modern statistical methodology can substantially improve accuracy and precision of gene expression measurements, relative to ad-hoc procedures introduced by designers and manufacturers of the technology. Currently, other applications of microarrays are becoming more and more popular. In this paper we describe a preprocessing methodology for a technology designed for the identification of DNA sequence variants in specific genes or regions of the human genome that are associated with phenotypes of interest such as disease. In particular we describe methodology useful for preprocessing Affymetrix SNP chips and obtaining genotype calls with the preprocessed data. We demonstrate how our procedure improves existing approaches using data from three relatively large studies including one in which large number independent calls are available. Software implementing these ideas are avialble from the Bioconductor oligo package

    Modelos de fragilidade com aplicações em analise de ligação

    Get PDF
    Orientador : Hildete Prisco PinheiroDissertação (mestrado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação CientificaMestradoMestre em Estatístic

    Using the R Package crlmm for Genotyping and Copy Number Estimation

    Get PDF
    Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number and integration of the marker-level estimates with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R.

    USING THE R PACKAGE crlmm FOR GENOTYPING AND COPY NUMBER ESTIMATION

    Get PDF
    Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number, develops markerand study-level summaries of batch effects, and demonstrates how the marker-level estimates can be integrated with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R. A compendium for reproducing the analysis is available from the author’s website (http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html)

    Using the R Package crlmm for Genotyping and Copy Number Estimation

    Get PDF
    Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number and integration of the marker-level estimates with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R

    A MULTILEVEL MODEL TO ADDRESS BATCH EFFECTS IN COPY NUMBER USING SNP ARRAYS

    Get PDF
    Submicroscopic changes in chromosomal DNA copy number dosage are common and have been implicated in many heritable diseases and cancers. Recent high-throughput technologies have a resolution that permits the detection of segmental changes in DNA copy number that span thousands of basepairs across the genome. Genome-wide association studies (GWAS) may simultaneously screen for copy number-phenotype and SNP-phenotype associations as part of the analytic strategy. However, genome-wide array analyses are particularly susceptible to batch effects as the logistics of preparing DNA and processing thousands of arrays often involves multiple laboratories and technicians, or changes over calendar time to the reagents and laboratory equipment. Failure to adjust for batch effects can lead to incorrect inference and requires inefficient post-hoc quality control procedures that exclude regions that are associated with batch. Our work extends previous model-based approaches for copy number estimation by explicitly modeling batch effects and using shrinkage to improve locus-specific estimates of copy number uncertainty. Key features of this approach include the use of diallelic genotype calls from experimental data to estimate batch- and locus-specific parameters of background and signal without the requirement of training data. We illustrate these ideas using a study of bipolar disease and a study of chromosome 21 trisomy. The former has batch effects that dominate much of the observed variation in quantile-normalized intensities, while the latter illustrates the robustness of our approach to datasets where as many as 25% of the samples have altered copy number. Locus-specific estimates of copy number can be plotted on the copy-number scale to investigate mosaicism and guide the choice of appropriate downstream approaches for smoothing the copy number as a function of physical position. The software is open source and implemented in the R package CRLMM available at Bioconductor (http:www.bioconductor.org)

    ASSOCIATON TESTS THAT ACCOMMODATE GENOTYPING ERRORS

    Get PDF
    High-throughput SNP arrays provide estimates of genotypes for up to one million loci, often used in genome-wide association studies. While these estimates are typically very accurate, genotyping errors do occur, which can influence in particular the most extreme test statistics and p-values. Estimates for the genotype uncertainties are also available, although typically ignored. In this manuscript, we develop a framework to incorporate these genotype uncertainties in case-control studies for any genetic model. We verify that using the assumption of a “local alternative” in the score test is very reasonable for effect sizes typically seen in SNP association studies, and show that the power of the score test is simply a function of the correlation of the genotype probabilities with the true genotypes. We demonstrate that the power to detect a true association can be substantially increased for difficult to call genotypes, resulting in improved inference in association studies

    Validation and extension of an empirical Bayes method for SNP calling on Affymetrix microarrays

    Get PDF
    Extended and validated CRLMM is shown to be more accurate than the Affymetrix default programs, and datasets and methods for validation are presented that can serve as standard benchmarks by which future SNP chip calling algorithms can be measured

    Rqc: A Bioconductor Package for Quality Control of High-Throughput Sequencing Data

    Get PDF
    As sequencing costs drop with the constant improvements in the field, next-generation sequencing becomes one of the most used technologies in biological research. Sequencing technology allows the detailed characterization of events at the molecular level, including gene expression, genomic sequence and structural variants. Such experiments result in billions of sequenced nucleotides and each one of them is associated to a quality score. Several software tools allow the quality assessment of whole experiments. However, users need to switch between software environments to perform all steps of data analysis, adding an extra layer of complexity to the data analysis workflow. We developed Rqc, a Bioconductor package designed to assist the analyst during assessment of high-throughput sequencing data quality. The package uses parallel computing strategies to optimize large data sets processing, regardless of the sequencing platform. We created new data quality visualization strategies by using established analytical procedures. That improves the ability of identifying patterns that may affect downstream procedures, including undesired sources technical variability. The software provides a framework for writing customized reports that integrates seamlessly to the R/Bioconductor environment, including publication-ready images. The package also offers an interactive tool to generate quality reports dynamically. Rqc is implemented in R and it is freely available through the Bioconductor project (https://bioconductor.org/packages/Rqc/) for Windows, Linux and Mac OS X operating systems

    Validation and extension of an empirical Bayes method for SNP calling on Affymetrix microarrays

    Get PDF
    Extended and validated CRLMM is shown to be more accurate than the Affymetrix default programs, and datasets and methods for validation are presented that can serve as standard benchmarks by which future SNP chip calling algorithms can be measured
    corecore