
Using the R Package crlmm for Genotyping and

Copy Number Estimation

Robert B Scharpf
Johns Hopkins University

Rafael A Irizarry
Johns Hopkins University

Matt Ritchie
Walter+Eliza Hall Institute of Medical Research

Benilton Carvalho
University of Cambridge

Ingo Ruczinski
Johns Hopkins University

Abstract

Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype
as well as copy number-phenotype associations at millions of markers. While genotyp-
ing algorithms are largely concordant when assessed on HapMap samples, tools to as-
sess copy number changes are more variable and often discordant. One explanation
for the discordance is that copy number estimates are susceptible to systematic differ-
ences between groups of samples that were processed at different times or by different
labs. Analysis algorithms that do not adjust for batch effects are prone to spurious mea-
sures of association. The R package crlmm implements a multilevel model that adjusts
for batch effects and provides allele-specific estimates of copy number. This paper il-
lustrates a workflow for the estimation of allele-specific copy number, develops marker-
and study-level summaries of batch effects, and demonstrates how the marker-level esti-
mates can be integrated with complimentary Bioconductor software for inferring regions
of copy number gain or loss. All analyses are performed in the statistical environment
R. A compendium for reproducing the analysis is available from the author’s website
(http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html).

Keywords: copy number, batch effects, robust, multilevel model, high-throughput, oligonu-
cleotide array.

1. Introduction

Duplications and deletions spanning kilobases of the genome contribute to a substantial pro-
portion of the genetic variation between individuals. Copy number variants (CNV) account
for a greater proportion of differences in terms of sequence composition between two indi-
viduals than single nucleotide polymorphisms (SNPs) (Zhang et al. 2009). CNV can arise
through a number of mechanisms during meiosis and mitosis and are well known to be impli-
cated in cancer through deletions that disrupt tumor suppressor genes or the amplification of
oncogenes. Copy number alterations have also been implicated in several genomic disorders,
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including complex diseases such as schizophrenia and autism (Karayiorgou et al. 2010; Pinto
et al. 2010).

Current estimates regarding the frequency and size of segmental duplications and deletions
in the human genome are largely based on high-throughput arrays that quantitate copy num-
ber on a genomic scale. Two such technologies are array comparative genomic hybridization
(aCGH) and genotyping platforms such as the Affymetrix oligonucleotide arrays and the Illu-
mina BeadArrays. While each of these platforms rely on the hybridization of probes to sample
preparations containing target DNA sequence, differences exist in the size of the probes, the
number of probes per target sequence, and whether the hybridization is competitive. Un-
like aCGH, genotyping arrays can be used to identify copy-neutral regions of homozygosity
that, while common in apparently normal individuals, can suggest rare genetic events such as
uniparental isodisomy (UPD). UPD has been implicated in heritable diseases such as Prader-
Willi syndrome (Altug-Teber et al. 2005). While the resolution is potentially much greater
in genotyping arrays due to the shorter probe length, shorter probe lengths tend to result in
more probe-to-probe variability with respect to cross-hybridization to the alternative allele,
nonspecific binding, and differences in basepair composition. Reliable inference of copy num-
ber gain or loss at a single 25 - 100 basepair locus is not currently possible, and statistical
methods that smooth the locus-level estimates as a function of the physical position in the
genome are needed.

Despite robust-to-outlier approaches for normalization, we have observed systematic differ-
ences in the copy number between groups of samples that can be perfectly predicted by the
timestamp on the CEL files. We refer to such systematic difference in copy number between
groups of samples as batch effects. That larger studies tend to have more substantial batch
effects than smaller studies is consistent with our conjecture that the nonstatic nature of
experimental reagents and laboratory conditions contribute over time to batch effects. Ir-
respective of etiology, we have found that the scan date of the array and chemistry plate
are useful surrogates for batch (Scharpf et al. 2010). With an appropriate experimental de-
sign that involves randomization of samples to chemistry plate, batch effects are a nuisance
variable that can be successfully modeled and removed.

Existing analytic strategies for identifying alterations in copy number have largely adopted a
one- or two-step approach. In the one-step approach, assessments of CNV are made from the
raw intensities using the joint distribution across samples. For instance, Zhang et al. (2009)
developed a Correlation Matrix Diagonal Segmentation (CMDS) that identifies recurrent
alterations in a population. While we have not formally evaluated the impact of batch effects
using this approach, it is important to note that the differences in raw intensities between
groups of samples, whether driven by biological causes or by technological artifacts such as
batch effects, are similar in terms of their effects on the data. A safe strategy when adopting
such an approach would be to filter loci associated with experimental factors such as chemistry
plate or scan date.

In contrast to the one-step approach, two-step approaches generally derive estimates of copy
number and uncertainty at each marker, followed by smoothing of the marker-level estimates
at the second stage. The motivation for the two-step approach is that the marker-level esti-
mates are too imprecise to provide reliable copy number estimates. However, marker-specific
estimates can be useful for at least two reasons. First, single-locus estimates are typically de-
rived from the joint distribution of intensities across samples and, through inspection of the
joint distribution, batch effects can be modeled and removed. Secondly, plots of the marker-



Robert B Scharpf, Rafael A Irizarry, Matthew E. Ritchie, Benilton Carvalho, Ingo Ruczinski3

level estimates can be useful for assessing copy number mosaicism. Mosaicism occurs when
mixtures of cell populations with different mutations give rise to noninteger copy number
estimates. For instance, many tumors are comprised of a mixture of cell populations repre-
senting different levels of tumor evolution. The choice of appropriate statistical methods for
smoothing at the second stage can therefore be informed by visualizations of the marker-level
estimates. In particular, hidden Markov models (HMMs) (Fridlyand et al. 2004; Colella et al.
2007; Wang et al. 2007; Scharpf et al. 2008) are generally more appropriate for germline dis-
eases in which latent, integer copy number states are reasonable. By contrast, segmentation
algorithms such as circular binary segmentation (Olshen et al. 2004; Venkatraman and Olshen
2007) may be more appropriate for diseases such as cancer. While segmentation algorithms
estimate segment means, HMMs provide direct inference about the latent copy number states
of interest and can be used to identify copy-neutral regions of homozygosity.

This paper describes software for the first of a two-stage approach for identifying CNV in
high-throughput genotyping arrays. Specifically, the implementation of a multi-level model
for copy number estimation in the R package crlmm. We illustrate our approach on 1258
HapMap samples that were assayed on the Affymetrix 6.0 platform. Section 2 discusses the
steps for preprocessing and genotyping the HapMap samples with crlmm. Locus-level copy
number estimation is described in Section 3. Section 4 illustrates how copy number estimates
from crlmm can be passed to HMMs or segmentation algorithms that smooth the locus level
estimates. Closing remarks are provided in Section 5.

2. Preprocessing and genotyping

This document is written in Sweave and is available as part of a compendium from the
following website: http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.
html. The compendium contains code, R functions, and data for reproducing the figures in
this analysis, and helps to insure that the required packages are available and current. The
website places code extracted from this Sweave document for each of the figures alongside
thumbnail versions of the figures. While reproducing the figures in this paper is possibly by
installing the compendium, reproducing the complete analysis described in this Sweave file
requires two additional steps. First, one would need to obtain the CEL files for the HapMap
phase 3 data and verify that any additional R packages beyond those that are required for
installing the compendium are available. See Section 6 for the R session information from
our analysis. Secondly, the following codechunk specifying the path to the CEL files and the
directory to store results should be edited as appropriate.

We begin our analysis of the HapMap data by loading the compendium and enabling large
data support (LDS). LDS is enabled in the crlmm package simply by loading the R package
ff. The ff is available from CRAN (http://cran.r-project.org/).

We begin our analysis by loading the compendium

> library(crlmmCompendium)

> library(ff)

With LDS enabled, one can fine-tune the RAM required for the genotyping and copy number
estimation. In general, the computational tasks that require all samples do not require all
probes and vice versa. In the following code, the functions ocProbesets and ocSamples

http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html
http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html
http://cran.r-project.org/
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indicate that we will process the data, where possible, in strata of 50,000 probes or 200
samples. By pulling only data for a subset of the probes and/or samples into active memory,
we reduce the required RAM for processing large datasets and lessen the dependency on
high performance computing clusters with large amounts of free RAM. The drawback to this
approach is the increase in I/O, particularly if the data is saved over a network.

> ldPath(outdir)

> ocProbesets(50000)

> ocSamples(200)

We complete the set-up for our analysis of the HapMap samples by specifying the names of
the CEL files and defining a surrogate for batch. A useful surrogate for batch is the scan date
of the array or the chemistry plate. For the HapMap phase 3 data, the chemistry plate is
the first 5 letters of the CEL filename. We extract the plate names from the filenames in the
following code.

> filenames <- list.celfiles(pathToCels, full.names = TRUE,

+ pattern = ".CEL")

> batch <- substr(basename(filenames), 1, 5)

While the preprocessing and genotyping of Affymetrix CEL files or Illumina IDAT files does
not require a minimum number of samples, allele-specific copy number estimation is more dif-
ficult for batches with few samples. To sidestep this difficulty, we exclude the plates CHEAP,
CORER, and TESLA that each have fewer than 10 samples. Statistical approaches to improve
estimation of allele-specific copy number for small batches is a future area of methodological
development in crlmm.

> excludeBatches <- names(table(batch))[table(batch) <

+ 10]

> exclude <- batch %in% excludeBatches

> filenames <- filenames[!exclude]

> batch <- as.factor(batch[!exclude])

Preprocessing. Preprocessing refers to normalization of the raw fluorescence intensities to
remove technological artifacts that may affect the location and scale of the intensities measured
from the optical scanners across arrays. Recent platforms for Affymetrix and Illumina include
probes for polymorphic loci as well as probes for nonpolymorphic regions. At polymorphic
loci, the raw intensities for each allele are quantile normalized to a target reference distribution
obtained from the HapMap phase 2 samples (Bolstad et al. 2003). The Affymetrix 6.0 platform
contains 3 or 4 identical probes for each allele. The normalized intensities for a set of identical
probes are summarized by the median. For nonpolymorphic loci, only one probe per loci is
available and the intensities are quantile normalized without a subsequent summarization step.
Following the normalization and summarization of the intensities at both the polymorphic
and nonpolymorphic loci, the polymorphic markers are genotyped by the crlmm algorithm.
Additional details regarding the preprocessing and genotyping of Affymetrix CEL files and
Illumina IDAT files are described elsewhere (Carvalho et al. 2007; ?; Ritchie et al. 2009).
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The steps for preprocessing and quantile-normalizing Affymetrix CEL files in crlmm are
wrapped in the function genotype. (Users that only want the genotype calls and do not
intend to estimate copy number should use the crlmm function instead.) The object returned
by the genotype function is an instance of the S4 class CNSet and serves as a container for
the normalized intensities and the genotype calls. The class CNSet extends the eSet class
definition in Biobase and thereby inherits a lot of the infrastructure for manipulating high-
dimensional set forth in the R package Biobase. The class extends eSet with additional slots
for batch and batchStatistics. These slots are described in greater detail in Section 3. As
the preprocessing and genotyping is computationally intensive, the script that includes the
following code chunk would typically be submitted using R CMD batch.

> container <- genotype(filenames = filenames, cdfName = "genomewidesnp6",

+ copynumber = TRUE, batch = batch)

By default, the sample names for the container, accessible by sampleNames(container) are
the CEL filenames. The crlmmCompendium contains a mapping from the CEL filenames to
the more familiar HapMap identifiers. The following code changes the sample labels from the
filename to the HapMap identifiers.

> container <- useHapMapIds(container)

> sampleNames(container)[1:5]

[1] "NA06989" "NA11891" "NA12058" "NA11843" "NA07037"

The metadata on the samples and features can be listed with the varLabels and fvarLabels,
respectively.

> assayDataElementNames(container)

[1] "alleleA" "alleleB" "call"
[4] "callProbability"

> varLabels(container)

[1] "SKW" "SNR" "gender" "hapmapId" "celFiles"

> fvarLabels(container)

[1] "chromosome" "position" "isSnp"

As a result of our decision to load the ff package, the assay data elements in the cnSet object
contain pointers to potentially very large objects on disk. One can list all of the ff files created
during the initialization of the container as in the following code chunk. These files should
not be moved or relocated.

> list.files(ldPath(), pattern = "\\.ff$")[1:3]
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[1] "A_119495cff.ff" "A_22ae8944a.ff" "B_1625558ec.ff"

The underlying data structures are intended to be handled seamlessly through the provided
interface in crlmm. For instance, in the following code chunk we open file connections to the
ff objects and access the quantile normalized intensities for the first 5 markers and the first 6
samples for allele A.

> invisible(open(container))

> system.time(res1 <- A(container)[1:5, 1:6])

user system elapsed
0.003 0.000 0.004

The above query is not instantaneous as these items pull data from large ff objects on disk
to active memory. Note that issuing the bracket operator, [,], in the above commmand
without specifying the rows or columns would pull all of the data from disk to active memory,
defeating the purpose of using the ff package. Subset operations on the container object
should be used with care. For instance, note the substantial difference in time for the following
command that returns the same result as in the preceding code chunk.

> system.time(res2 <- A(container[1:5, 1:6]))

user system elapsed
0.430 0.028 0.460

> all.equal(res1, res2)

[1] TRUE

> invisible(close(container))

In the analysis of genomewide association data, it is often useful to visualize the genotype
clusters for loci of interest. All that is required for such a visualization is the platform-
specific identifier for the SNP of interest. In the example below, we plot the genotype clus-
ters for SNP A-4247386. The object genotypeSet that contains the data for this SNP is
available in the compendium accompanying this manuscript (http://www.biostat.jhsph.
edu/~rscharpf/crlmmCompendium/index.html), and was generated from the following com-
mands.

> snpid <- "SNP_A-4247386"

> i <- match(snpid, featureNames(container))

> invisible(open(container))

> genotypeSet <- container[i, ]

> invisible(close(container))

http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html
http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html
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The following code chunk extracts the normalized intensities, the genotype calls, and the
confidence scores for the genotypes. The extracted data is then plotted in two complimentary
ways. The left panel in Figure 1 is a scatterplot of the log 2 normalized intensities for each
allele shaded by the genotype call. In the right panel, we instead shade the plotting symbols
by the genotype confidence score with lower confidence scores corresponding to darker shades
of gray.

> data(genotypeSet)

> a <- as.matrix(log2(A(genotypeSet)))

> b <- as.matrix(log2(B(genotypeSet)))

> gt <- as.integer(calls(genotypeSet))

> col <- brewer.pal(3, "Set1")[gt]

> gt.conf <- as.numeric(confs(genotypeSet))

> min.conf <- min(gt.conf)

> max.conf <- max(gt.conf)

> sc <- (gt.conf - min.conf)/(max.conf - min.conf)

> bg <- rep(NA, ncol(genotypeSet))

> for (j in seq_along(bg)) bg[j] <- grey(sc[j])

> par(las = 1, mfrow = c(1, 2), mar = c(0.5, 0.2, 0.5,

+ 0.2), oma = c(4, 4, 2, 2))

> plot(a, b, bg = col, pch = 21, cex = 0.7, xlab = , ylab = "",

+ cex.axis = 0.8)

> plot(a, b, bg = bg, pch = 21, cex = 0.7, xlab = "", ylab = "",

+ yaxt = "n", cex.axis = 0.8)

> mtext(featureNames(genotypeSet), 3, outer = TRUE)

> mtext(expression(log[2](I[A])), 1, outer = TRUE, line = 2)

> par(las = 3)

> mtext(expression(log[2](I[B])), 2, outer = TRUE, line = 2)

3. Locus-level copy number estimation

In large studies, batch effects become evident as the strength of the A and/or B intensities
can depend on when the samples were processed and scanned. Algorithms that assign bial-
lelic genotypes to samples based on the ratio of log intensities, as implemented in the crlmm
algorithm, are more resistant to batch effects as a consequence of robustness of the log ratio
to batch differences. However, estimation of allele-specific copy number is more difficult as
batch effects and true differences in copy number would be similar in terms of their effects on
the measured strength of the allelic intensities. While quantile normalization is an effective
means for removing array to array variation and provides additional robustness to outliers in
individual samples, such normalization procedures are insufficient for removing batch effects.
In this section, we discuss the implementation of the algorithm in crlmm, complete our de-
scription of the CNSet container that was introduced in the preceding section, describe useful
accessors for summary statistics at the copy number level, and suggest visualizations that can
be used to assess goodness of fit.
Copy number estimation in crlmm consists of the following steps. First, we compute robust
estimates of the within-genotype location and scale using the median and median absolute
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Figure 1: A plot of the genotype clusters for one SNP color coded by the genotype calls (left)
and the crlmm confidence score (right). While all the confidence scores were high for this
SNP, darker shades of grey in the right panel correspond to samples with a relatively lower
confidence score.

deviation (MAD), respectively, for each batch of samples. At polymorphic loci, many of the
genotypes may be unobserved. For such loci, we impute the unobserved within-genotype
medians using regression (see Scharpf et al. (2010)). Shrinking the within-genotype variance
estimates to the median value across all SNPs provides additional robustness to outliers. For
each locus we assume a linear relationship between allelic dosage and the median within-
genotype intensity. The intercept and slope coefficients describing the linear relationship are
estimated using weighted least squares regression. The above steps are implemented in the
R function crlmmCopynumber. Using the default settings for this function, one only pass the
container returned by the genotype function in the previous section.

> cnSet <- crlmmCopynumber(container)

Batch-specific statistics estimated during the copy number step are stored in the batchStatistics
slot of the CNSet object. Each element in this slot has dimension R×C, where R is the number
of markers and C is the number of batches. Batch summary statistics include the within-
genotype cluster median and the MAD for each SNP, the correlation of the normalized A
and B intensities within each cluster (correlations were computed on the log 2 scale), and
the number of AA, AB, and BB genotypes. Accessors in the crlmm package return these
summary statistics as arrays. If LDS is enabled, each element in the batchStatistics slot
will be an ff object. The following code chunk illustrates a few of the available accessors for
batch summary statistics.

> Ns(cnSet, i = 1:3, j = 1:2)

> mads(cnSet, i = 1:3, j = 1:2)[, "A", , ]

> medians(cnSet, i = 1:3, j = 1:2)[, "A", , ]
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The regression coefficients from the model for copy number are also stored in the batchStatistics
slot. These coefficients are used to compute allele-specific copy number through the following
relationship:

ĉk,ijp = max

{
1

φ̂k,ip

(Ik,ijp − ν̂k,ip) , 0

}
for k ∈ {A,B}. (1)

The estimates of allele-specific copy number, ĉA and ĉB, are retrieved from the cnSet object
using the methods CA and CB, respectively.

As with genotype calls, a useful means to inspect model fit is to plot the lower level intensities
along with statistical summaries for copy number, such as the fit of the regression line. Figure
2 illustrates the fit of the linear model to the A allele intensities for 16 randomly selected
polymorphic loci. As the regression is fit independently for each batch, the normalized data
plotted in these panels displays only the samples on the GIGAS chemistry plate. Again, the
data used for producing Figure 2 is available in the crlmmCompendium package, and the
code used to generate the data is included in the following code chunk.

> invisible(open(cnSet))

> set.seed(123)

> snp.index <- sample(which(isSnp(cnSet) == 1), 16, replace = FALSE)

> sample.index <- which(batch(cnSet) == "GIGAS")

> exampleData1 <- cnSet[snp.index, sample.index]

> invisible(close(cnSet))

As the construction of Figure 2 requires accessing several levels of the processed data from the
cnSet object, we briefly step through the code used to produce this figure. First, we randomly
sample the indices of 16 SNPs and define a column index that selects only the samples from
a single plate, GIGAS. Next, we extract the normalized intensities for the A and B alleles
as well as the genotype calls for the selected markers and SNPs. As the coefficients from the
linear model are marker- and batch-specific, we store the coefficients as ff objects on disk and
maintain pointers to these files in the cnSet object. The intercept, νA, and slope coefficient,
φA, for the A allele can be extracted with the accessors nu and phi, respectively.

> data(exampleData1)

> a <- as.matrix(A(exampleData1))

> b <- as.matrix(B(exampleData1))

> gt <- as.matrix(calls(exampleData1))

> nuA <- nu(exampleData1, "A")

> phA <- phi(exampleData1, "A")

> col <- brewer.pal(7, "Accent")[c(1, 4, 7)]

Looping through the marker indices, we construct boxplots of the normalized intensities for
the A allele stratified by the genotype calls. The R function segments overlays the fitted
regression line. A similar strategy could be used to plot the regression line for the B allele.
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> par(las = 1, mfrow = c(4, 4), mar = rep(0.5, 4), oma = c(4,

+ 4, 4, 4))

> for (i in 1:16) {

+ IA <- split(a[i, ], gt[i, ])

+ names(IA)[names(IA) == "1"] <- "AA"

+ names(IA)[names(IA) == "2"] <- "AB"

+ names(IA)[names(IA) == "3"] <- "BB"

+ ugt <- sort(unique(gt[i, ]))

+ at <- rep(NA, length(ugt))

+ at[ugt == 1] <- 3

+ at[ugt == 3] <- 1

+ at[ugt == 2] <- 2

+ ylim <- c(nuA[i] - 1000, nuA[i] + 2 * phA[i] + 1000)

+ ylim[1] <- max(0, ylim[1])

+ boxplot(IA, col = col[ugt], xlim = c(0.5, 3.5), at = at,

+ xlim = c(0.5, 3.5), ylim = ylim, xaxt = "n",

+ yaxt = "n")

+ graphics:::segments(y0 = nuA[i], x0 = 1, y1 = nuA[i] +

+ 2 * phA[i], x1 = 3, lwd = 2, col = "royalblue")

+ if (i >= 13)

+ axis(1, at = 1:3, labels = c("BB", "AB", "AA"))

+ }

> mtext(expression(I[A]), side = 2, outer = TRUE, line = 1)

Scatterplots of the log-transformed normalized intensities for the A and B alleles can be useful
for visualizing the prediction regions for integer copy number. Using the same set of randomly
selected SNPs in the previous codechunk, we plot the prediction regions for copy numbers 1,
2, and 3 in Figure 3.

> lA <- log2(a)

> lB <- log2(b)

> cols <- c("blue", "black", "red")

> par(las = 1, mfrow = c(4, 4), mar = rep(0.5, 4), oma = c(4,

+ 4, 4, 4))

> for (i in 1:16) {

+ plot(lB[i, ], lA[i, ], col = "grey50", bg = col[gt[i,

+ ]], xaxt = "n", yaxt = "n", pch = 21, cex = 0.8,

+ xlim = c(6.5, 12.5), ylim = c(6.5, 12.5), xlab = "",

+ ylab = "")

+ for (CN in 1:3) lines(exampleData1, i, "GIGAS", CN,

+ col = cols[CN], lwd = 2, x.axis = "B")

+ }

> mtext(expression(log[2](I[B])), 1, outer = TRUE)

> par(las = 3)

> mtext(expression(log[2](I[A])), 2, outer = TRUE)
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4. Downstream tools

Marker-level estimates of copy number for Affymetrix and Illumina platforms are too noisy
to reliably quantitate copy number at a single marker. Approaches that smooth the copy
number estimates as a function of the physical position are useful for inferring regions of
copy alterations and copy-neutral regions of homozygosity (ROH). This section illustrates
how the marker-level estimates of copy number from crlmm can be passed to downstream
segmentation and HMM algorithms. We illustrate our approach on chromosome 8 of HapMap
sample NA19007 for which a large amplification on the p-arm has been previously identified
(Redon et al. 2006). The normalized intensities for this sample, the genotype calls, and
the parameter estimates for copy number are stored in the redonSet object available in the
crlmmCompendium package. The following codechunk was used to generate this object.

> marker.index <- which(chromosome(cnSet) == 8)

> invisible(open(cnSet))

> redonSet <- as(cnSet[marker.index, cnSet$hapmapId ==

+ "NA19007"], "CopyNumberSet")

> invisible(close(cnSet))

> redonSet <- redonSet[order(position(redonSet)), ]

> redonSet <- redonSet[-which(is.na(copyNumber(redonSet))),

+ ]

> redonSet <- redonSet[-which(duplicated(position(redonSet))),

+ ]

A hidden Markov model. The HMM implemented in the R package VanillaICE allows
some flexibility for the data inputs and the definition of the hidden states. Using the default
settings for the VanillaICE version indicated in Section 6, we specify homozygous deletion,
hemizygous deletion, normal, and amplification as the hidden states of interest. In the fol-
lowing codechunk, we record the time required to fit the HMM to the 96,876 markers on
chromosome 8 and display the output from the hmm function. The HMM finds strong ev-
idence for an amplification as indicated by the log likelihood ratio (LLR) comparing the
predicted amplification to the null model of no copy number alteration.

> data(redonSet)

> hmmOpts <- hmm.setup(redonSet, c("hom-del", "hem-del",

+ "normal", "amp"), copynumberStates = 0:3, normalIndex = 3,

+ log.initialP = rep(log(1/4), 4))

> timing <- system.time(fit.cn <- hmm(redonSet, hmmOpts,

+ verbose = FALSE))

> hmm.df <- as.data.frame(fit.cn)

> print(hmm.df[, c(2:4, 7:9)])

start end width state numMarkers LLR
1 21242 1347537 1326296 3 892 0.0000000
2 1347717 1348097 381 2 9 9.8372915
3 1348129 3672962 2324834 3 2476 0.0000000
4 3674352 4126939 452588 4 769 2127.4739235
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5 4127094 4129387 2294 3 6 0.0000000
6 4130651 5566202 1435552 4 2014 5541.0029926
7 5568079 5571263 3185 3 7 0.0000000
8 5575331 5938114 362784 4 486 1049.2834539
9 5938253 25032441 19094189 3 15516 0.0000000
10 25032546 25035892 3347 4 13 2.7949839
11 25039974 43943193 18903220 3 11802 0.0000000
12 46966687 129825448 82858762 3 51522 0.0000000
13 129832305 129833255 951 1 2 2.9233360
14 129846624 135127490 5280867 3 4063 0.0000000
15 135130425 135135878 5454 1 16 123.6816954
16 135144379 137962640 2818262 3 2244 0.0000000
17 137963670 137963684 15 1 2 0.2727200
18 137969915 146268947 8299033 3 5037 0.0000000

> print(timing)

user system elapsed
1.015 0.001 1.019

Circular binary segmentation. CBS is implemented in the R package DNAcopy and is
particularly useful for cancer data in which noninteger copy numbers are plausible. Again,
we adopt the default settings for this algorithm in the following codechunk.

> library(DNAcopy)

> CNA.object <- CNA(genomdat = copyNumber(redonSet), chrom = chromosome(redonSet),

+ maploc = position(redonSet), data.type = "logratio",

+ sampleid = sampleNames(redonSet))

> smu.object <- smooth.CNA(CNA.object)

> timing.cbs <- system.time(cbs.segments <- segment(smu.object))

Analyzing: NA19007

> print(cbs.segments, showSegRows = TRUE)

segmented logratio CNA data with 1 samples and 96876 probes
segment(x = smu.object)

ID chrom loc.start loc.end num.mark seg.mean
CN_1290009 NA19007 8 21242 320865 157 2.0772
SNP_A-8457345 NA19007 8 321550 321630 2 0.0812
CN_1279103 NA19007 8 324018 585208 184 2.0283
CN_371097 NA19007 8 585310 585896 9 3.4527
SNP_A-8602711 NA19007 8 591043 1347537 540 2.0024
CN_1291837 NA19007 8 1347717 1348097 9 1.0361

startRow endRow
CN_1290009 1 157
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SNP_A-8457345 158 159
CN_1279103 160 343
CN_371097 344 352
SNP_A-8602711 353 892
CN_1291837 893 901

> timing.cbs

user system elapsed
20.236 0.001 20.240

As CBS does not call deletions and amplifications, we implemented a few simple rules to
indicate whether a region is likely to be amplified or deleted. We then coerce the output to an
instance of the IRanges class RangedData to facilitate plotting the intervals and comparisons
with the HMM results.

> cbs.segments <- cbs.segments$output

> cbs.segments$call <- rep(3, nrow(cbs.segments))

> cbs.segments$call[cbs.segments$seg.mean > 2.5] <- 4

> cbs.segments$call[cbs.segments$seg.mean < 1.25 & cbs.segments$seg.mean >

+ 0.75] <- 2

> cbs.segments$call[cbs.segments$seg.mean < 0.75] <- 1

> cbs.ir <- RangedData(IRanges(cbs.segments$loc.start,

+ cbs.segments$loc.end), chrom = cbs.segments$chrom,

+ numMarkers = cbs.segments$num.mark, seg.mean = cbs.segments$seg.mean,

+ cnCall = cbs.segments$call)

We plot the predicted states from the HMM and the CBS algorithm beneath the marker-
level copy number estimates from crlmm in Figure 4. The code for producing this Figure in
included in the website describing the compendium.

5. Discussion

We have applied the crlmm software to the HapMap phase 3 data, illustrating the steps of
preprocessing, the genotyping of polymorphic markers, and the estimation of allele-specific
copy number. We organize the normalized intensities, statistical summaries from the geno-
typing and copy number estimation steps, and meta-data on the features and samples in a
single container. This container extends the eSet class defined in Biobase, with additional
slots to accommodate batch-specific statistical summaries relevant for copy number analyses.
This organization facilitates visualizations that allow inspection of the genotypes and copy
number estimates in the context of the lower-level data. We have provided such visualizations
in the course of the estimation steps for copy number using the HapMap data as an exem-
plar. However, note that it would be straightforward to proceed in the opposite direction
– to target specific genomic regions in which copy number estimates are associated with a
particular phenotype, followed by more detailed inspection of the loci in this region. While
smoothing the locus-level estimates of copy number to infer regions of gain and loss is beyond
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the scope of the crlmm package, we have illustrated how crlmm can be extended by hidden
Markov models implemented in the VanillaICE package or the circular binary segmentation
algorithm implemented in the DNAcopy package. Batch effects are common in large high-
throughput laboratores. The crlmm package models the variation driven by batch as part of
the estimation procedure for copy number, permitting inference of copy number gain and loss
from batch-adjusted locus-level summaries. We expect that such an approach will reduce the
occurrence of spurious associations induced by temporal artifacts such as batch effects.

6. Session information

The R package crlmm is available from Bioconductor http://www.bioconductor.org.

This document was prepared using Sweave. Computationally intensive steps, such as the
genotype callling and copy number estimation, were precomputed and efficient summaries
loaded from files.

� R version 2.12.0 alpha (2010-09-23 r52986), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.iso885915, LC_NUMERIC=C, LC_TIME=en_US.iso885915,
LC_COLLATE=en_US.iso885915, LC_MONETARY=C, LC_MESSAGES=en_US.iso885915,
LC_PAPER=en_US.iso885915, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.iso885915, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 2.9.1, bit 1.1-4, crlmm 1.7.14, crlmmCompendium 1.0.3,
DNAcopy 1.23.6, ellipse 0.3-5, ff 2.1-4, genefilter 1.31.2, IRanges 1.7.34, MASS 7.3-8,
oligoClasses 1.11.8, RColorBrewer 1.0-2, SNPchip 1.13.0, VanillaICE 1.11.3

� Loaded via a namespace (and not attached): affyio 1.17.4, annotate 1.27.1,
AnnotationDbi 1.11.6, Biostrings 2.17.47, DBI 0.2-5, mvtnorm 0.9-92,
preprocessCore 1.11.0, RSQLite 0.9-2, splines 2.12.0, survival 2.35-8, xtable 1.5-6
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Figure 2: Each panel displays the intensities for the A allele for all samples on the GIGAS
plate stratified by the genotype call. The linear model is fitted on the intensity scale (as
opposed to the log-scale) with parameters for the intercept and slope that are SNP- and
batch-specific. The straight line over-plotted is the estimated background and slope for the
GIGAS plate.
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Figure 3: A scatter plot of the log 2 normalized intensities for the 16 SNPs plotted in Figure
2. The colored ellipses are the prediction regions for hemizygous deletion (blue), normal copy
number (black), and 3 copies (red).
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Figure 4: An amplification on the p-arm of chromosome 8 for HapMap sample NA19007.
Inferred regions of copy number gain and loss are plotted for a HMM and circular binary
segmentation.


	Intro
	GT
	Locus-level copy number estimation
	Downstream
	Discussion
	Session information

