286 research outputs found

    Base Orientation of Second DNA in RecA·DNA Filaments. Analysis by combination of linear dichroism and small angle neutron scattering in flow-oriented solution

    Get PDF
    To gain insight into the mechanism of pairing two complementary DNA strands by the RecA protein, we have determined the nucleobase orientation of the first and the second bound DNA strands in the RecA·DNA filament by combined measurements of linear dichroism and small angle neutron scattering on flow-oriented samples. An etheno-modified DNA, poly(depsilon A) was adapted as the first DNA and an oligo(dT) as the second DNA, making it possible to distinguish between the linear dichroism signals of the two DNA strands. The results indicate that binding of the second DNA does not alter the nucleobase orientation of the first bound strand and that the bases of the second DNA are almost coplanar to the bases of the first strand although somewhat more tilted (60 degrees relative to the fiber axis compared with 70 degrees for the first DNA strand). Similar results were obtained for the RecA·DNA complex formed with unmodified poly(dA) and oligo(dT). An almost coplanar orientation of nucleobases of two DNA strands in a RecA-DNA filament would facilitate scanning for, and recognition of, complementary base sequences. The slight deviation from co-planarity could increase the free energy of the duplex to facilitate dissociation in case of mismatching base sequences

    Soft-Surface DNA Nanotechnology: DNA Constructs Anchored and Aligned to Lipid Membrane**

    Get PDF
    No strings attached: At least three attachment points are needed to align a two-dimensional DNA nanoconstruct to a soft lipid membrane surface with a porphyrin nucleoside as membrane anchor (see picture). The resulting freely diffusing DNA constructs can be reversibly assembled on the surface thus enabling the possibility of a self-repairing system. \ua9 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Force-induced melting of DNA-evidence for peeling and internal melting from force spectra on short synthetic duplex sequences

    Get PDF
    Overstretching of DNA occurs at about 60-70 pN when a torsionally unconstrained double-stranded DNA molecule is stretched by its ends. During the transition, the contour length increases by up to 70% without complete strand dissociation. Three mechanisms are thought to be involved: force-induced melting into single-stranded DNA where either one or both strands carry the tension, or a B-to-S transition into a longer, still base-paired conformation. We stretch sequence-designed oligonucleotides in an effort to isolate the three processes, focusing on force-induced melting. By introducing site-specific inter-strand cross-links in one or both ends of a 64 bp AT-rich duplex we could repeatedly follow the two melting processes at 5 mM and 1 M monovalent salt. We find that when one end is sealed the AT-rich sequence undergoes peeling exhibiting hysteresis at low and high salt. When both ends are sealed the AT sequence instead undergoes internal melting. Thirdly, the peeling melting is studied in a composite oligonucleotide where the same AT-rich sequence is concatenated to a GC-rich sequence known to undergo a B-to-S transition rather than melting. The construct then first melts in the AT-rich part followed at higher forces by a B-to-S transition in the GC-part, indicating that DNA overstretching modes are additive

    Covalent functionalization of carbon nanotube forests grown in situ on a metal-silicon chip

    Get PDF
    We report on the successful covalent functionalization of carbon nanotube (CNT) forests, in situ grown on a silicon chip with thin metal contact film as the buffer layer between the CNT forests and the substrate. The CNT forests were successfully functionalized with active amine and azide groups, which can be used for further chemical reactions. The morphology of the CNT forests was maintained after the functionalization. We thus provide a promising foundation for a miniaturized biosensor arrays system that can be easily integrated with Complementary Metal-Oxide Semiconductor (CMOS) technology

    Binding of cell-penetrating penetratin peptides to plasma membrane vesicles correlates directly with cellular uptake

    Get PDF
    AbstractCell-penetrating peptides (CPPs) gain access to intracellular compartments mainly via endocytosis and have capacity to deliver macromolecular cargo into cells. Although the involvement of various endocytic routes has been described it is still unclear which interactions are involved in eliciting an uptake response and to what extent affinity for particular cell surface components may determine the efficiency of a particular CPP. Previous biophysical studies of the interaction between CPPs and either lipid vesicles or soluble sugar-mimics of cell surface proteoglycans, the two most commonly suggested CPP binding targets, have not allowed quantitative correlations to be established. We here explore the use of plasma membrane vesicles (PMVs) derived from cultured mammalian cells as cell surface models in biophysical experiments. Further, we examine the relationship between affinity for PMVs and uptake into live cells using the CPP penetratin and two analogs enriched in arginines and lysines respectively. We show, using centrifugation to sediment PMVs, that the amount of peptide in the pellet fraction correlates linearly with the degree of cell internalization and that the relative efficiency of all-arginine and all-lysine variants of penetratin can be ascribed to their respective cell surface affinities. Our data show differences between arginine- and lysine-rich variants of penetratin that has not been previously accounted for in studies using lipid vesicles. Our data also indicate greater differences in binding affinity to PMVs than to heparin, a commonly used cell surface proteoglycan mimic. Taken together, this suggests that the cell surface interactions of CPPs are dependent on several cell surface moieties and their molecular organization on the plasma membrane

    Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination

    Get PDF
    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca2+ than of Mg2+, we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca2+ induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg2+, ADP/Mg2+ or ADP/Ca2+ does not. A high strand exchange activity is observed for the filament formed with ATP/Ca2+, whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca2+ stabilizes the loop conformation and thereby the protein–DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange

    Probing microscopic orientation in membranes by linear dichroism

    Get PDF
    The cell, membrane is an ordered environment, which anisotropically affects the structure and interactions of all of its molecules. Monitoring membrane orientation at a local level is rather challenging but could reward crucial information on protein conformation and interactions, in the lipid bilayer. We monitored local, lipid ordering. changes upon varying the cholesterol concentration using polarized light spectroscopy and pyrene as a membrane probe., Pyrene, with, a shape intermediate between a disc and a rod, can detect microscopic orientation variations at the level of its site. The global membrane orientation was determined using curcumin, a probe with nonoverlapping absorption relative to that of pyrene. While the macroscopic orientation of a liquid-phase bilayer decreases with increasing cholesterol concentration, the local orientation is improved. Pyrene is,found to be sensitive to-the local effects induced by cholesterol and temperature on the bilayer. Disentangling local and global orientation effects in membranes could provide new insights into functionally significant interactions of membrane proteins
    corecore