247 research outputs found

    Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia

    Get PDF
    Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality

    Perfusion defect size predicts engraftment but not early retention of intra-myocardially injected cardiosphere-derived cells after acute myocardial infarction

    Get PDF
    Therapeutic cell retention and engraftment are critical for myocardial regeneration. Underlying mechanisms, including the role of tissue perfusion, are not well understood. In Wistar Kyoto rats, syngeneic cardiosphere-derived cells (CDCs) were injected intramyocardially, after experimental myocardial infarction. CDCs were labeled with [18F]-FDG (n = 7), for quantification of 1-h retention, or with sodium-iodide-symporter gene (NIS; n = 8), for detection of 24-h engraftment by reporter imaging. Perfusion was imaged simultaneously. Infarct size was 37 ± 9 and 38 ± 9% of LV in FDG and NIS groups. Cell signal was located in the infarct border zone in all animals. No significant relationship was observed between infarct size and 1-h CDC retention (r = −0.65; P = 0.11). However, infarct size correlated significantly with 24-h engraftment (r = 0.75; P = 0.03). Residual perfusion at the injection site was not related to cell retention/engraftment. Larger infarcts are associated with improved CDC engraftment. This observation encourages further investigation of microenvironmental conditions after ischemic damage and their role in therapeutic cell survival

    Gene expression in lungs of mice lacking the 5-hydroxytryptamine transporter gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While modulation of the serotonin transporter (5HTT) has shown to be a risk factor for pulmonary arterial hypertension for almost 40 years, there is a lack of in vivo data about the broad molecular effects of pulmonary inhibition of 5HTT. Previous studies have suggested effects on inflammation, proliferation, and vasoconstriction. The goal of this study was to determine which of these were supported by alterations in gene expression in serotonin transporter knockout mice.</p> <p>Methods</p> <p>Eight week old normoxic mice with a 5-HTT knock-out (5HTT-/-) and their heterozygote(5HTT+/-) or wild-type(5HTT+/+) littermates had right ventricular systolic pressure(RVSP) assessed, lungs collected for RNA, pooled, and used in duplicate in Affymetrix array analysis. Representative genes were confirmed by quantitative RT-PCR and western blot.</p> <p>Results</p> <p>RVSP was normal in all groups. Only 124 genes were reliably changed between 5HTT-/- and 5HTT+/+ mice. More than half of these were either involved in inflammatory response or muscle function and organization; in addition, some matrix, heme oxygenase, developmental, and energy metabolism genes showed altered expression. Quantitative RT-PCR for examples from each major group confirmed changes seen by array, with an intermediate level in 5HTT +/- mice.</p> <p>Conclusion</p> <p>These results for the first time show the in vivo effects of 5HTT knockout in lungs, and show that many of the downstream mechanisms suggested by cell culture and ex vivo experiments are also operational in vivo. This suggests that the effect of 5HTT on pulmonary vascular function arises from its impact on several systems, including vasoreactivity, proliferation, and immune function.</p

    Functional Energetics of CD4+-Cellular Immunity in Monoclonal Antibody-Associated Progressive Multifocal Leukoencephalopathy in Autoimmune Disorders

    Get PDF
    BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic central nervous system- (CNS-) infection that typically occurs in a subset of immunocompromised individuals. An increasing incidence of PML has recently been reported in patients receiving monoclonal antibody (mAb) therapy for the treatment of autoimmune diseases, particularly those treated with natalizumab, efalizumab and rituximab. Intracellular CD4(+)-ATP-concentration (iATP) functionally reflects cellular immunocompetence and inversely correlates with risk of infections during immunosuppressive therapy. We investigated whether iATP may assist in individualized risk stratification for opportunistic infections during mAb-treatment. METHODOLOGY/PRINCIPAL FINDINGS: iATP in PHA-stimulated, immunoselected CD4(+)-cells was analyzed using an FDA-approved assay. iATP of mAb-associated PML (natalizumab (n = 8), rituximab (n = 2), efalizumab (n = 1)), or other cases of opportunistic CNS-infections (HIV-associated PML (n = 2), spontaneous PML, PML in a psoriasis patient under fumaric acids, natalizumab-associated herpes simplex encephalitis (n = 1 each)) was reduced by 59% (194.5±29 ng/ml, mean±SEM) in comparison to healthy controls (HC, 479.9±19.8 ng/ml, p<0.0001). iATP in 14 of these 16 patients was at or below 3(rd) percentile of healthy controls, similar to HIV-patients (n = 18). In contrast, CD4(+)-cell numbers were reduced in only 7 of 15 patients, for whom cell counts were available. iATP correlated with mitochondrial transmembrane potential (ΔΨ(m)) (iATP/ΔΨ(m)-correlation:tau = 0.49, p = 0.03). Whereas mean iATP of cross-sectionally analysed natalizumab-treated patients was unaltered (448.7±12 ng/ml, n = 150), iATP was moderately decreased (316.2±26.1 ng/ml, p = 0.04) in patients (n = 7) who had been treated already during the pivotal phase III trials and had received natalizumab for more than 6 years. 2/92 (2%) patients with less than 24 months natalizumab treatment revealed very low iATP at or below the 3(rd) percentile of HC, whereas 10/58 (17%) of the patients treated for more than 24 months had such low iATP-concentrations. CONCLUSION: Our results suggest that bioenergetic parameters such as iATP may assist in risk stratification under mAb-immunotherapy of autoimmune disorders

    Translational studies in the complex role of neurotransmitter systems in anxiety and anxiety disorders

    Get PDF
    Discovery of innovative anxiolytics is severely hampering. Existing anxiolytics are developed decades ago and are still the therapeutics of choice. Moreover, lack of new drug targets forecasts a severe jeopardy in the future treatment of the huge population of CNS-diseased patients. We simply lack the knowledge on what is wrong in brains of anxious people (normal and diseased). Translational research, based on interacting clinical and preclinical research, is extremely urgent. In this endeavor, genetic and genomic approaches are part of the spectrum of contributing factors. We focus on three druggable targets: serotonin transporter, 5-HT1A, and GABAA receptors. It is still uncertain whether and how these targets are involved in normal and diseased anxiety processes. For serotonergic anxiolytics, the slow onset of action points to indirect effects leading to plasticity changes in brain systems leading to reduced anxiety. For GABAA benzodiazepine drugs, acute anxiolytic effects are found indicating primary mechanisms directly influencing anxiety processes. Close translational collaboration between fundamental academic and discovery research will lead to badly needed breakthroughs in the search for new anxiolytics.</p

    Acute and constitutive increases in central serotonin levels reduce social play behaviour in peri-adolescent rats

    Get PDF
    Item does not contain fulltextRATIONALE: Serotonin is an important modulator of social behaviour. Individual differences in serotonergic signalling are considered to be a marker of personality that is stable throughout lifetime. While a large body of evidence indicates that central serotonin levels are inversely related to aggression and sexual behaviour in adult rats, the relationship between serotonin and social behaviour during peri-adolescence has hardly been explored. OBJECTIVE: To study the effect of acute and constitutive increases in serotonin neurotransmission on social behaviour in peri-adolescent rats. MATERIALS AND METHODS: Social behaviour in peri-adolesent rats (28-35 days old) was studied after genetic ablation of the serotonin transporter, causing constitutively increased extra-neuronal serotonin levels, and after acute treatment with the serotonin reuptake inhibitor fluoxetine or the serotonin releasing agent 3,4-methylenedioxymethamphetamine (MDMA). A distinction was made between social play behaviour that mainly occurs during peri-adolescence, and non-playful social interactions that are abundant during the entire lifespan of rats. RESULTS: In serotonin transporter knockout rats, social play behaviour was markedly reduced, while non-playful aspects of social interaction were unaffected. Acute treatment with fluoxetine or MDMA dose-dependently inhibited social play behaviour. MDMA also suppressed non-playful social interaction but at higher doses than those required to reduce social play. Fluoxetine did not affect non-playful social interaction. CONCLUSIONS: These data show that both acute and constitutive increases in serotonergic neurotransmission reduce social play behaviour in peri-adolescent rats. Together with our previous findings of reduced aggressive and sexual behaviour in adult serotonin transporter knockout rats, these data support the notion that serotonin modulates social behaviour in a trait-like manner
    corecore