170 research outputs found
Source parameters of the M 6.5 Skyros Island (North Aegean Sea) earthquake of July 26, 2001
Teleseismic body wave modelling, time domain moment tensor inversion of regional waveforms and spectral analysis of the far-field P-wave pulses are used to derive the source parameters of the July 26, 2001 Skyros earthquake (M 6.5). Its epicentre is located south of the Sporades Islands in the North Aegean Sea (Greece). Previous focal mechanism solutions indicate motion on strike-slip faults. The time domain moment tensor inversion is applied for the first time to the regional waveforms of the recently established broadband network in Greece. Its application gave results which are highly consistent with teleseismic waveform modelling. The results of this study, in combination with the distribution of aftershocks, indicate left-lateral strike slip motion on a NW-SE striking fault with parameters: fault plane (strike = 151°, dip = 83°, rake = 7°) and auxiliary plane (strike = 60°, dip = 84°, rake = 173°), depth 12 km and M 0 = 5.98e18 N m. Moreover, the time domain moment tensor inversion technique yielded a pure double couple source with negligible CLVD. The spectral analysis of the far-field P-wave pulses resulted in a fault length L ~ 32 km, stress drop ~ 9 bars and average displacement u ~ 30 cm.These values are in very good agreement with those estimated from empirical scaling relations applicable to the Aegean area
Force-extension relation of cross-linked anisotropic polymer networks
Cross-linked polymer networks with orientational order constitute a wide
class of soft materials and are relevant to biological systems (e.g., F-actin
bundles). We analytically study the nonlinear force-extension relation of an
array of parallel-aligned, strongly stretched semiflexible polymers with random
cross-links. In the strong stretching limit, the effect of the cross-links is
purely entropic, independent of the bending rigidity of the chains. Cross-links
enhance the differential stretching stiffness of the bundle. For hard
cross-links, the cross-link contribution to the force-extension relation scales
inversely proportional to the force. Its dependence on the cross-link density,
close to the gelation transition, is the same as that of the shear modulus. The
qualitative behavior is captured by a toy model of two chains with a single
cross-link in the middle.Comment: 7 pages, 4 figure
Weak point disorder in strongly fluctuating flux-line liquids
We consider the effect of weak uncorrelated quenched disorder (point defects)
on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which
is based on mapping the flux-line system onto a quantum liquid of relativistic
charged bosons in 2+1 dimensions [P. Benetatos and M. C. Marchetti, Phys. Rev.
B 64, 054518, (2001)]. In this model, flux lines are allowed to be arbitrarily
curved and can even form closed loops. Point defects can be scalar or polar. In
the latter case, the direction of their dipole moments can be random or
correlated. Within the Gaussian approximation of our hydrodynamic model, we
calculate disorder-induced corrections to the correlation functions of the
flux-line fields and the elastic moduli of the flux-line liquid. We find that
scalar disorder enhances loop nucleation, and polar (magnetic) defects decrease
the tilt modulus.Comment: 15 pages, submitted to Pramana-Journal of Physics for the special
volume on Vortex State Studie
Workflow for the Validation of Geomechanical Simulations through Seabed Monitoring for Offshore Underground Activities
Underground fluid storage is gaining increasing attention as a means to balance energy
production and consumption, ensure energy supply security, and contribute to greenhouse gas
reduction in the atmosphere by CO2 geological sequestration. However, underground fluid storage
generates pressure changes, which in turn induce stress variations and rock deformations. Numerical
geomechanical models are typically used to predict the response of a given storage to fluid injection
and withdrawal, but validation is required for such a model to be considered reliable. This paper
focuses on the technology and methodology that we developed to monitor seabed movements and
verify the predictions of the impact caused by offshore underground fluid storage. To this end, we put
together a measurement system, integrated into an Autonomous Underwater Vehicle, to periodically
monitor the seabed bathymetry. Measurements repeated during and after storage activities can be
compared with the outcome of numerical simulations and indirectly confirm the existence of safety
conditions. To simulate the storage system response to fluid storage, we applied the Virtual Element
Method. To illustrate and discuss our methodology, we present a possible application to a depleted
gas reservoir in the Adriatic Sea, Italy, where several underground geological formations could be
potentially converted into storage in the futur
Plasticity in current-driven vortex lattices
We present a theoretical analysis of recent experiments on current-driven
vortex dynamics in the Corbino disk geometry. This geometry introduces
controlled spatial gradients in the driving force and allows the study of the
onset of plasticity and tearing in clean vortex lattices. We describe plastic
slip in terms of the stress-driven unbinding of dislocation pairs, which in
turn contribute to the relaxation of the shear, yielding a nonlinear response.
The steady state density of free dislocations induced by the applied stress is
calculated as a function of the applied current and temperature. A criterion
for the onset of plasticity at a radial location in the disk yields a
temperature-dependent critical current that is in qualitative agreement with
experiments.Comment: 11 pages, 4 figure
Transverse fluctuations of grafted polymers
We study the statistical mechanics of grafted polymers of arbitrary stiffness
in a two-dimensional embedding space with Monte Carlo simulations. The
probability distribution function of the free end is found to be highly
anisotropic and non-Gaussian for typical semiflexible polymers. The reduced
distribution in the transverse direction, a Gaussian in the stiff and flexible
limits, shows a double peak structure at intermediate stiffnesses. We also
explore the response to a transverse force applied at the polymer free end. We
identify F-Actin as an ideal benchmark for the effects discussed.Comment: 10 pages, 4 figures, submitted to Physical Review
How underground systems can contribute to meet the challenges of energy transition
The paper provides an overview of the several scientific and technical issues and challenges to be addressed for underground storage of carbon dioxide, hydrogen and mixtures of hydrogen and natural gas. The experience gained on underground energy systems and materials is complemented by new competences to adequately respond to the new needs raised by transition from fossil fuels to renewables. The experimental characterization and modeling of geological formations (including geochemical and microbiological issues), fluids and fluid-flow behavior and mutual interactions of all the systems components at the thermodynamic conditions typical of underground systems as well as the assessment and monitoring of safety conditions of surface facilities and infrastructures require a deeply integrated teamwork and fit-for-purpose laboratories to support theoretical research. The group dealing with large-scale underground energy storage systems of Politecnico di Torino has joined forces with the researchers of the Center for Sustainable Future Technologies of the Italian Institute of Technology, also based in Torino, to meet these new challenges of the energy transition era, and evidence of the ongoing investigations is provided in this paper
Evidence for a Two-stage Melting Transition of the Vortex Matter in Bi2Sr2Ca1Cu2O8+d Single Crystals obtained by Muon Spin Rotation
From muon spin rotation measurements on under- to overdoped Bi-2212 crystals
we obtain evidence for a two-stage transition of the vortex matter as a
function of temperature. The first transition is well known and related to the
irreversibility line (IL). The second one is located below the IL and has not
been previously observed. It occurs for all three sets of crystals and is
unrelated to the vortex mobility. Our data are consistent with a two-stage
melting scenario where the intra-planar melting of the vortex lattice and the
inter-planar decoupling of the vortex lines occur independently.Comment: 9 pages and 3 figure
Nonlinear Hydrodynamics of Disentangled Flux-Line Liquids
In this paper we use non-Gaussian hydrodynamics to study the magnetic
response of a flux-line liquid in the mixed state of a type-II superconductor.
Both the derivation of our model, which goes beyond conventional Gaussian flux
liquid hydrodynamics, and its relationship to other approaches used in the
literature are discussed. We focus on the response to a transverse tilting
field which is controlled by the tilt modulus, c44, of the flux array. We show
that interaction effects can enhance c44 even in infinitely thick clean
materials. This enhancement can be interpreted as the appearance of a
disentangled flux-liquid fraction. In contrast to earlier work, our theory
incorporates the nonlocality of the intervortex interaction in the field
direction. This nonlocality is crucial for obtaining a nonvanishing
renormalization of the tilt modulus in the thermodynamic limit of thick
samples.Comment: 20 pages, 3 figures (submitted to PRB
- …