60 research outputs found

    Risk perception among Brazilian individuals with high risk for colorectal cancer and colonoscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Risk perception is considered a motivating factor for adopting preventive behaviors. This study aimed to verify the demographic characteristics and cancer family history that are predictors of risk perception and to verify if risk perception is a predictor of colonoscopy adherence.</p> <p>Methods</p> <p>Individuals with a family colorectal cancer history as indicated by a proband with cancer were interviewed by telephone. They responded to a questionnaire covering demographic characteristics, colonoscopy history and four questions on risk perception. Tests of multiple linear regression and logistic regression were used to identify associations between dependent and independent variables.</p> <p>Results</p> <p>The 117 participants belonged to 62 families and had a mean age of 45.2 years. The majority of these individuals were female (74.4%) and from families who met the Amsterdam Criteria (54.7%). The average risk perception was 47.6%, with a median of 50%. The average population perception of individual risk was 55.4%, with a median of 50%. Variables associated with a higher risk perception were age, gender, religion, school level, income, and death of a family member. The variable predicting colonoscopy was receiving medical information regarding risk (odds ratio OR 8.40).</p> <p>Conclusions</p> <p>We found that family cancer history characteristics (number of relatives with cancer, risk classification) are associated with adequate risk perception. Risk perception does not predict colonoscopy in this sample. The only variable that predicted colonoscopy was receiving medical information recommending screening.</p

    MediPlEx - a tool to combine in silico & experimental gene expression profiles of the model legume Medicago truncatula

    Get PDF
    Henckel K, Küster H, Stutz L, Goesmann A. MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula. BMC Research Notes. 2010;3(1): 262.BACKGROUND:Expressed Sequence Tags (ESTs) are in general used to gain a first insight into gene activities from a species of interest. Subsequently, and typically based on a combination of EST and genome sequences, microarray-based expression analyses are performed for a variety of conditions. In some cases, a multitude of EST and microarray experiments are conducted for one species, covering different tissues, cell states, and cell types. Under these circumstances, the challenge arises to combine results derived from the different expression profiling strategies, with the goal to uncover novel information on the basis of the integrated datasets.FINDINGS:Using our new application, MediPlEx (MEDIcago truncatula multiPLe EXpression analysis), expression data from EST experiments, oligonucleotide microarrays and Affymetrix GeneChips can be combined and analyzed, leading to a novel approach to integrated transcriptome analysis. We have validated our tool via the identification of a set of well-characterized AM-specific and AM-induced marker genes, identified by MediPlEx on the basis of in silico and experimental gene expression profiles from roots colonized with AM fungi.CONCLUSIONS:MediPlEx offers an integrated analysis pipeline for different sets of expression data generated for the model legume Medicago truncatula. As expected, in silico and experimental gene expression data that cover the same biological condition correlate well. The collection of differentially expressed genes identified via MediPlEx provides a starting point for functional studies in plant mutants. MediPlEx can freely be used at http://www.cebitec.uni-bielefeld.de/mediplex

    Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively affecting gene expression post-transcriptionally. Identification of miRNAs at the global genome-level by high-throughout sequencing is essential to functionally characterize miRNAs in plants. Drought is one of the common environmental stresses limiting plant growth and development. To understand the role of miRNAs in response of plants to drought stress, drought-responsive miRNAs were identified by high-throughput sequencing in a legume model plant, <it>Medicago truncatula</it>.</p> <p>Results</p> <p>Two hundreds eighty three and 293 known miRNAs were identified from the control and drought stress libraries, respectively. In addition, 238 potential candidate miRNAs were identified, and among them 14 new miRNAs and 15 new members of known miRNA families whose complementary miRNA*s were also detected. Both high-throughput sequencing and RT-qPCR confirmed that 22 members of 4 miRNA families were up-regulated and 10 members of 6 miRNA families were down-regulated in response to drought stress. Among the 29 new miRNAs/new members of known miRNA families, 8 miRNAs were responsive to drought stress with both 4 miRNAs being up- and down-regulated, respectively. The known and predicted targets of the drought-responsive miRNAs were found to be involved in diverse cellular processes in plants, including development, transcription, protein degradation, detoxification, nutrient status and cross adaptation.</p> <p>Conclusions</p> <p>We identified 32 known members of 10 miRNA families and 8 new miRNAs/new members of known miRNA families that were responsive to drought stress by high-throughput sequencing of small RNAs from <it>M. truncatula</it>. These findings are of importance for our understanding of the roles played by miRNAs in response of plants to abiotic stress in general and drought stress in particular.</p

    Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids

    Get PDF
    Background: Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. Results: The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. Conclusions: A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process

    Plant lectins: the ties that bind in root symbiosis and plant defense

    Get PDF
    Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general
    corecore