5,272 research outputs found

    Role of the membrane for mechanosensing by tethered channels

    Full text link
    Biologically important membrane channels are gated by force at attached tethers. Here, we generically characterize the non-trivial interplay of force, membrane tension, and channel deformations that can affect gating. A central finding is that minute conical channel deformation under force leads to significant energy release during opening. We also calculate channel-channel interactions and show that they can amplify force sensitivity of tethered channels

    Impaired Auditory Temporal Selectivity in the Inferior Colliculus of Aged Mongolian Gerbils

    Get PDF
    Aged humans show severe difficulties in temporal auditory processing tasks (e.g., speech recognition in noise, low-frequency sound localization, gap detection). A degradation of auditory function with age is also evident in experimental animals. To investigate age-related changes in temporal processing, we compared extracellular responses to temporally variable pulse trains and human speech in the inferior colliculus of young adult (3 month) and aged (3 years) Mongolian gerbils. We observed a significant decrease of selectivity to the pulse trains in neuronal responses from aged animals. This decrease in selectivity led, on the population level, to an increase in signal correlations and therefore a decrease in heterogeneity of temporal receptive fields and a decreased efficiency in encoding of speech signals. A decrease in selectivity to temporal modulations is consistent with a downregulation of the inhibitory transmitter system in aged animals. These alterations in temporal processing could underlie declines in the aging auditory system, which are unrelated to peripheral hearing loss. These declines cannot be compensated by traditional hearing aids (that rely on amplification of sound) but may rather require pharmacological treatment

    Population Coding of Interaural Time Differences in Gerbils and Barn Owls

    Get PDF
    Interaural time differences (ITDs) are the primary cue for the localization of low-frequency sound sources in the azimuthal plane. For decades, it was assumed that the coding of ITDs in the mammalian brain was similar to that in the avian brain, where information is sparsely distributed across individual neurons, but recent studies have suggested otherwise. In this study, we characterized the representation of ITDs in adult male and female gerbils. First, we performed behavioral experiments to determine the acuity with which gerbils can use ITDs to localize sounds. Next, we used different decoders to infer ITDs from the activity of a population of neurons in central nucleus of the inferior colliculus. These results show that ITDs are not represented in a distributed manner, but rather in the summed activity of the entire population. To contrast these results with those from a population where the representation of ITDs is known to be sparsely distributed, we performed the same analysis on activity from the external nucleus of the inferior colliculus of adult male and female barn owls. Together, our results support the idea that, unlike the avian brain, the mammalian brain represents ITDs in the overall activity of a homogenous population of neurons within each hemisphere

    Tension dynamics and viscoelasticity of extensible wormlike chains

    Get PDF
    The dynamic response of prestressed semiflexible biopolymers is characterized by the propagation and relaxation of tension, which arises due to the near inextensibility of a stiff backbone. It is coupled to the dynamics of contour length stored in thermal undulations, but also to the local relaxation of elongational strain. We present a systematic theory of tension dynamics for stiff yet extensible wormlike chains. Our results show that even moderate prestress gives rise to distinct Rouse-like extensibility signatures in the high-frequency viscoelastic response.Comment: 4 pages, 1 figure; corrected typo

    Collective force generation by groups of migrating bacteria

    Full text link
    From biofilm and colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. While considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here for the first time using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching of bacterial groups also produces traction hotspots, however with amplified forces around 100 pN. Although twitching groups migrate slowly as a whole, traction fluctuates rapidly on timescales <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified in groups by a factor of ~5. Since advancing protrusions of gliding cells push on average in the direction of motion, we infer a long-range compressive load sharing among sub-leading cells. Together, these results show that the forces generated during twitching and gliding have complementary characters and both forces are collectively amplified in groups

    BOSQUE, Ignacio, ed. (2006): Diccionario combinatorio práctico del español contemporáneo [Reseña]

    Get PDF
    [Resumen] Reseña de Bosque, Ignacio, ed. (2006): Diccionario combinatorio práctico del español contemporáneo, Madrid, SM

    Traffic flow densities in large transport networks

    Get PDF
    We consider transport networks with nodes scattered at random in a large domain. At certain local rates, the nodes generate traffic flowing according to some navigation scheme in a given direction. In the thermodynamic limit of a growing domain, we present an asymptotic formula expressing the local traffic flow density at any given location in the domain in terms of three fundamental characteristics of the underlying network: the spatial intensity of the nodes together with their traffic generation rates, and of the links induced by the navigation. This formula holds for a general class of navigations satisfying a link-density and a sub-ballisticity condition. As a specific example, we verify these conditions for navigations arising from a directed spanning tree on a Poisson point process with inhomogeneous intensity function.Comment: 20 pages, 7 figure
    • …
    corecore