4,051 research outputs found

    Displayed Categories

    Get PDF
    We introduce and develop the notion of *displayed categories*. A displayed category over a category C is equivalent to "a category D and functor F : D --> C", but instead of having a single collection of "objects of D" with a map to the objects of C, the objects are given as a family indexed by objects of C, and similarly for the morphisms. This encapsulates a common way of building categories in practice, by starting with an existing category and adding extra data/properties to the objects and morphisms. The interest of this seemingly trivial reformulation is that various properties of functors are more naturally defined as properties of the corresponding displayed categories. Grothendieck fibrations, for example, when defined as certain functors, use equality on objects in their definition. When defined instead as certain displayed categories, no reference to equality on objects is required. Moreover, almost all examples of fibrations in nature are, in fact, categories whose standard construction can be seen as going via displayed categories. We therefore propose displayed categories as a basis for the development of fibrations in the type-theoretic setting, and similarly for various other notions whose classical definitions involve equality on objects. Besides giving a conceptual clarification of such issues, displayed categories also provide a powerful tool in computer formalisation, unifying and abstracting common constructions and proof techniques of category theory, and enabling modular reasoning about categories of multi-component structures. As such, most of the material of this article has been formalised in Coq over the UniMath library, with the aim of providing a practical library for use in further developments.Comment: v3: Revised and slightly expanded for publication in LMCS. Theorem numbering change

    Computation of multi-leg amplitudes with NJet

    Get PDF
    In these proceedings we report our progress in the development of the publicly available C++ library NJet for accurate calculations of high-multiplicity one-loop amplitudes. As a phenomenological application we present the first complete next-to-leading order (NLO) calculation of five jet cross section at hadron colliders.Comment: 8 pages, 5 figures, Contribution to the proceedings of "ACAT 2013" conference, Beijing, China, May 201

    A Code Policy Guaranteeing Fully Automated Path Analysis

    Get PDF
    Calculating the worst-case execution time (WCET) of real-time tasks is still a tedious job. Programmers are required to provide additional information on the program flow, analyzing subtle, context dependent loop bounds manually. In this paper, we propose to restrict written and generated code to the class of programs with input-data independent loop counters. The proposed policy builds on the ideas of single-path code, but only requires partial input-data independence. It is always possible to find precise loop bounds for these programs, using an efficient variant of abstract execution. The systematic construction of tasks following the policy is facilitated by embedding knowledge on input-data dependence in function interfaces and types. Several algorithms and benchmarks are analyzed to show that this restriction is indeed a good candidate for removing the need for manual annotations

    Comparing efficient computation methods for massless QCD tree amplitudes: Closed Analytic Formulae versus Berends-Giele Recursion

    Full text link
    Recent advances in our understanding of tree-level QCD amplitudes in the massless limit exploiting an effective (maximal) supersymmetry have led to the complete analytic construction of tree-amplitudes with up to four external quark-anti-quark pairs. In this work we compare the numerical efficiency of evaluating these closed analytic formulae to a numerically efficient implementation of the Berends-Giele recursion. We compare calculation times for tree-amplitudes with parton numbers ranging from 4 to 25 with no, one, two and three external quark lines. We find that the exact results are generally faster in the case of MHV and NMHV amplitudes. Starting with the NNMHV amplitudes the Berends-Giele recursion becomes more efficient. In addition to the runtime we also compared the numerical accuracy. The analytic formulae are on average more accurate than the off-shell recursion relations though both are well suited for complicated phenomenological applications. In both cases we observe a reduction in the average accuracy when phase space configurations close to singular regions are evaluated. We believe that the above findings provide valuable information to select the right method for phenomenological applications.Comment: 22 pages, 9 figures, Mathematica package GGT.m and example notebook is included in submissio

    Displayed Categories

    Get PDF
    We introduce and develop the notion of displayed categories. A displayed category over a category C is equivalent to "a category D and functor F : D -> C", but instead of having a single collection of "objects of D" with a map to the objects of C, the objects are given as a family indexed by objects of C, and similarly for the morphisms. This encapsulates a common way of building categories in practice, by starting with an existing category and adding extra data/properties to the objects and morphisms. The interest of this seemingly trivial reformulation is that various properties of functors are more naturally defined as properties of the corresponding displayed categories. Grothendieck fibrations, for example, when defined as certain functors, use equality on objects in their definition. When defined instead as certain displayed categories, no reference to equality on objects is required. Moreover, almost all examples of fibrations in nature are, in fact, categories whose standard construction can be seen as going via displayed categories. We therefore propose displayed categories as a basis for the development of fibrations in the type-theoretic setting, and similarly for various other notions whose classical definitions involve equality on objects. Besides giving a conceptual clarification of such issues, displayed categories also provide a powerful tool in computer formalisation, unifying and abstracting common constructions and proof techniques of category theory, and enabling modular reasoning about categories of multi-component structures. As such, most of the material of this article has been formalised in Coq over the UniMath library, with the aim of providing a practical library for use in further developments

    Towards Automated Generation of Time-Predictable Code

    Get PDF
    Knowledge of the worst-case execution time of software components is essential in safety-critical hard real-time systems. The analysis thereof is not trivial as the execution time depends on many factors, including the underlying hardware platform, the program structure, and the code produced by the compiler. Often, the execution time is variable and highly sensitive to the input data the program has to process. This paper presents a code transformation applicable in a compiler backend that produces time-predictable code. The resulting code contains a single input-data independent execution path, in order to obtain programs of stable timing behaviour. The transformation technique has been validated by applying it on a number of benchmarks. Experiments show a reduction of execution time variability, at acceptable costs for the single execution path

    A Formal Framework for Precise Parametric WCET Formulas

    Get PDF
    Parametric worst-case execution time (WCET) formulas are a valuable tool to estimate the impact of input data properties on the WCET at design time, or to guide scheduling decisions at runtime. Previous approaches to parametric WCET analysis either provide only informal ad-hoc solutions or tend to be rather pessimistic, as they do not take flow constraints other than simple loop bounds into account. We develop a formal framework around path- and frequency expressions, which allow us to reason about execution frequencies of program parts. Starting from a reducible control flow graph and a set of (parametric) constraints, we show how to obtain frequency expressions and refine them by means of sound approximations, which account for more sophisticated flow constraints. Finally, we obtain closed-form parametric WCET formulas by means of partial evaluation. We developed a prototype, implementing our solution to parametric WCET analysis, and compared existing approaches within our setting. As our framework supports fine-grained transformations to improve the precision of parametric formulas, it allows to focus on important flow relations in order to avoid intractably large formulas
    • …
    corecore