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Abstract
Parametric worst-case execution time (WCET) formulas are a valuable tool to estimate the im-
pact of input data properties on the WCET at design time, or to guide scheduling decisions at
runtime. Previous approaches to parametric WCET analysis either provide only informal ad-
hoc solutions or tend to be rather pessimistic, as they do not take flow constraints other than
simple loop bounds into account. We develop a formal framework around path- and frequency
expressions, which allow us to reason about execution frequencies of program parts. Starting
from a reducible control flow graph and a set of (parametric) constraints, we show how to obtain
frequency expressions and refine them by means of sound approximations, which account for
more sophisticated flow constraints. Finally, we obtain closed-form parametric WCET formulas
by means of partial evaluation. We developed a prototype, implementing our solution to para-
metric WCET analysis, and compared existing approaches within our setting. As our framework
supports fine-grained transformations to improve the precision of parametric formulas, it allows
to focus on important flow relations in order to avoid intractably large formulas.
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1 Introduction

In hard real-time systems, it is crucial to guarantee that timing constraints are met. Con-
sequently, determining the maximum time it might take to execute a task, its so called
Worst-Case Execution Time (WCET), is both a necessary task in certification, and an
important metric in the design of hard real-time systems. Since the early days of WCET
analysis, there is a vital interest in parametric WCET analysis, which attempts to calculate
a closed-form formula for the WCET, parametrized over an abstraction of the input space.

Formulas describing the WCET are particularly interesting during development. For
example, formulas are well-suited to specify the timing behavior of components, or to classify
the impact of input on the timing behavior [9]. Furthermore, WCET formulas can be used to
determine the WCET depending on the actual input at runtime [18, 7, 15], which can guide
dynamic scheduling, or facilitate the early detection of timing problems. We are particularly
interested in the application of these techniques to optimization and the classification of the
impact of architectural parameters.
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In recent years, there has been active development on techniques for determining symbolic
flow facts, which characterize possible execution paths depending on the input data and
reduce the search space for the worst-case execution path. Interesting examples include the
automated computation of symbolic loop bounds [19] and solving of recurrence relations
derived from abstract programs [1]. However, as already noted in the article of Chapman [6]
in 1994, parametric WCET formulas are often not precise enough to allow for the derivation
of tight bounds, if they fail to take additional flow facts (besides loop bounds) into account.

Flow facts of particular interest are bounds of inner loops in nested loops, where the
bound of an inner loop varies with the iterations of the outer loop. Infeasible pairs model
that two statements are mutually exclusive with respect to an execution context, and are
common in embedded system code, especially in auto-generated code from synchronous
languages or MATLAB Simulink [5].

The Implicit Path Enumeration Technique (IPET, [13, 16]) currently is the most widely-
used technique for calculating the WCET. It generates an integer linear program (ILP), for
which sophisticated solvers are available. In ILP, it is relatively easy to model flow facts
besides loop bounds, improving the precision of the WCET bound. There is a parametric
variant of the ILP problem called Parametric Integer Programming [14]; experiments with
solvers for this powerful problem description language have been disappointing though
[4, 3]. A function generating ILPs for each concrete input data configuration can also be
viewed as a form of parametric ILP. While this approach has some interesting applications
[5], its applicability is limited as the number of concrete ILP problems to solve increases
exponentially in the number of input bits.

1.1 Motivating Example

The motivating example in Figure 1 illustrates the problem of taking additional flow facts
into account, in this case a so-called triangle loop.

B1
i = 0

B2
i < N ?

B3
rand(1) ?

B9
return

B4
work

B5
work
j = 0

B6
j < i ?

B7
work
j++

B8
i++

f

L1

L2

/* Nested loops */
void f(int N) {
  /* Loop Bound: N */
  for (i = 0; i < N; i++)
    if rand()
      B4();
    else
      B5();
      /* Loop Bound: i (N-1) */
      for (j = 0; j < i; j++)
        /* Global Bound: N (N-1) / 2 */
        B7();
      end
    end
  end
}

/* Symbolic Frequency Bounds depending on N */

fB4 + fB5 ≤ N fB1    (1)

fB7 ≤ (N-1) fB5      (2)

fB7 ≤ ½ N (N-1) fB1  (3)

Figure 1 Example: Triangle Loop

In order to simplify the presentation, we will assume that the cost of all nodes but B4,
B5 and B7 is zero. Considering each iteration of the outer loop in turn, it is not difficult to
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see that a precise bound for the WCET of f is

WCET(f,N) =
N∑
i=0

max(B4, B5 + iB7) . (1)

While automatically calculating a closed formula for the exact parametric WCET of
f is hard, it is interesting to investigate different approximations.1 If no flow facts but
symbolic loop bounds are taken into account [6, 2], the formula closely corresponds to a
regular expression describing the set of paths, replacing concatenation by addition, and set
union by the max operator. For loops, the loop body is multiplied by the symbolic loop
bound, in this case N for the outer loop, and N − 1 for the inner loop. After simplification,
we thus obtain

WCET(f,N) = max(NB4, NB5 +N(N − 1)B7) . (2)

For larger values of N or B7, the quadratic term dominates, leading to a WCET overesti-
mation of up to 100%. Another recent approach is that of [4], which propagates constraints
for each node, and then computes the sum of all nodes, multiplied by their symbolic execution
bound. In this case, this would lead to the approximation

WCET(f,N) = NB4 +NB5 + N(N − 1)
2 B7 . (3)

This approach works well for single-path programs, but is rather pessimistic otherwise,
as choice is mapped to addition instead of the maximum. Both of the previous approaches
are easy to model in our framework. The techniques presented in this article allow to derive
the following approximation, and prove it correct:

WCET(f,N) = max(NB4, NB5) + N(N − 1)
2 B7 . (4)

This leads to a slight over-approximation if B4 is expensive, but is a better approximation
than the first one in the common case. In order to further improve the preciseness of the
formula, one may introduce a case distinction, and either use Equation 2, if B4 is executed
at least N

2 times, or Equation 4 if it is executed less often. This approach increases the size
of the formula, however, and thus in general may lead to intractably large formulas.

We believe that there is no single optimal strategy for constructing parametric formulas,
and thus lobby for a formal framework, presented next, which allows to selectively refine
formulas. In contrast to the related framework of Colin and Bernat [8], we chose an algebraic
approach which is decoupled from the semantics of the analyzed program, and permits
relatively simple correctness proofs. In Section 4, we describe the construction of formulas,
the refinement of formulas using given, symbolic constraints, as well as the simplification
and evaluation of formulas. Our experiments are described in Section 5, followed by our
conclusion in Section 6.

1 For this particular problem, the exact WCET can be computed manually, by determining the smallest
integer k, such that if i = k, executing the nested loop is more expensive than executing B4. With
k = min(N, max(0, dB4−B5

B7
e)), the WCET is then given by WCET(f, N) = kB4 + (N − k)B5 +

N(N−1)−k(k−1)
2 B7 .

WCET’12
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2 Background

In this work, we are mainly concerned with the construction of parametric WCET formulas
from a given program representation, and the refinement of formulas using given program
flow constraints. Therefore, we briefly review control flow representation and flow constraints,
but do not address other relevant issues here, such as program-flow or processor-behavior
analysis.

2.1 Control Flow Representation
The representation of programs in our analysis closely follows the machine code representation
in the LLVM compiler framework2, which is a central component of our evaluation framework.

A control flow graph (CFG) G = 〈V,E〉 models the possible execution sequences of a
function. Each node v ∈ V corresponds to the execution of a sequence of instructions, and an
edge (v, v′) from E ⊆ V × V to a possible change of control from the last instruction of v to
the first instruction of v′. The successors of a node v are given by succ(v) = {v′ | (v, v′) ∈ E},
the predecessors by pred(v) = {v′ | (v′, v) ∈ E}. A node vd dominates a node v (denoted as
vd dom v) if every path from the start node to v must go through vd. vd strictly dominates
v if vd dom v and vd 6= v.

We require several properties of the CFG representation, which are established in a
preprocessing step. Each CFG G has a unique entry node sG , the only node where the set of
predecessors is empty, and a unique exit node tG , with succ(tG) = ∅.

We only consider reducible CFGs [11] and thus irreducible loops need to be eliminated
before WCET analysis. In a reducible CFG, loops L ⊆ V are identified by a unique header
node hL, which dominates all loop members v ∈ VL. A back edge is an edge from a member
of a loop L to its loop header hL. The acyclic forward CFG is obtained from a CFG by
removing all back edges. Loops may be nested: The loop L2 is an inner loop of L1, if the
header hL2 is a member of loop L1.

2.2 Flow constraints
In order to be WCET-analyzable, the maximum number of iterations of any loop in a
program must be statically determinable. Applying to the CFG representation of a program,
we define the loop bound of a loop L to be the maximum number of times the loop header
node hL of L is entered via any of its backedges in every execution.

Considering only the control-flow structure of the program together with simple numeric
loop bounds will in most cases lead to an imprecise WCET bound. A reason for this are
infeasible paths, i.e., structurally possible program paths that are not taken in any execution
due to functional dependencies of program variables. Most prominent examples are mutually
exclusive statements, and triangle loops, i.e., nested loops in which the loop bound of the
inner loop depends on the iteration counter of the outer loop.

Linear flow constraints are the basis for IPET-based WCET calculation methods. In the
corresponding ILP problem, the control-flow structure is expressed by means of linear relations
between execution frequencies of CFG edges. Additional restrictions, for example to express
relations between edge execution frequencies in different loop scopes, can easily be added
into the system of linear constraints. Linear flow constraints have the form

∑
i ai · fei ≤ C,

where fei
is the execution frequency of edge ei, and ai, C ∈ Z are constants.

2 http://www.llvm.org

http://www.llvm.org
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In case of symbolic ai or C, the ILP problem is parametric and cannot be solved by
standard IPET methods. Flow facts are either provided through manual annotations by the
programmer or automatically derived by static program analysis.

3 Formal Framework

3.1 Path Expressions
Based on the work of [17], we can regard any path π in a directed graph G = 〈V,E〉 as a
string over E. A path expression P of type (v, w) with v, w ∈ V (denoted as P (v, w)) is a
regular expression over E such that every string π in the language σ(P ) is a path from v

to w. Let P (v, w) be a path expression of type (v, w). Then, all subexpressions P1 and P2
of path expression P are also path expressions, whose type can be defined recursively as
follows [17]:

1. If P = P1 ∪ P2, then P1 and P2 are of type (v, w) (alternative paths).
2. If P = P1 · P2, there must be a unique vertex u such that P1 is of type (v, u) and P2 is of

type (u,w) (path concatenation).
3. If P = P ∗1 , then v = w and P1 is of type (v, v) (loop).

We call a path expression complete iff σ(P (v, w)) is the set of all paths from v to w in G.
For any given CFG G with entry node s and exit node t, the set of all structurally feasible
(possibly infinite) paths through the CFG is defined by a complete path expression P (s, t).

The underlying algebraic structure of path expressions is a Kleene algebra, i.e., an
idempotent semiring (dioid) over E with the two binary operations of alternative paths ∪
as addition with neutral element ∅ and path concatenation · as multiplication with neutral
element ε (empty string), and the additional unary operation of repetition ∗ (cf. Table 1).

a∗ is equivalent to the infinite expansion to (ε ∪ a ∪ aa ∪ aaa ∪ . . .). We exploit the
algebraic structure to keep the a path expression P compact, as equivalence transformations
on P do not change the language σ(P ).

Due to the associativity of both (binary) operations ∪ and · and by assigning operator
precedences in the order ∗ , · , ∪ (starting with the highest), we can omit most brackets in
path expressions. We also omit · in the notation, as usual for multiplication.

3.2 Frequency Expressions
Instead of calculating a cost formula directly from path expressions, we first introduce an
abstraction from the set of paths to node frequencies. This abstraction lies at the heart of the
successful IPET analysis, and is the basis for the concept of linear flow constraints. In our
context, it permits us take flow constraints into account, to reason about node frequencies
and prove the correctness of formula transformations.

The frequency fπ(e) of an edge e on a path π is defined as the number of occurrences of
e in π; that is, fπ is a function mapping edges to their occurrence count in π. A frequency
constraint is a predicate on the frequencies of edges on a path, and acts a filter selecting
valid paths from the set of all structurally possible ones. Formally, given a path expression
P (v, w), and a set of frequency constraints C, the set of valid paths for P (v, w, C) is given by
σ(P, C) = {π ∈ σ(P ) | ∀C ∈ C : C(fπ)}.

An expression P ′ is a sound approximation of P (v, w, C), if σ(P ′) ⊇ σ(P, C), that is, each
valid path is included in the language described by P ′. An approximation of an expression
P ′ is called exact with respect to C, if σ(P ′) = σ(P, C).

WCET’12
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Frequency expressions are syntactically similar to path expressions; we just introduce a
bounds notation P [L,U ] which is equivalent to the expansion

⋃
L≤i≤U P

i, with P i = P [i,i] =
PP · · ·P (i times) and P 0 = ε. Consequently we replace a path expression P ∗ by P [0,∞] to
simplify notation during constraint refinement (see Section 4.2). However, concatenation
is commutative for frequency expressions. For example, while P1 = e1e2 and P2 = e2e1 are
different path expressions, they are equivalent if interpreted as frequency expressions.

Frequency expressions are useful for two reasons. First, they allow us to take non-local
constraints into account, as discussed in Section 4.2. Second, frequency expressions allow us
to limit the growth of a formula when splitting subexpressions. For example, suppose that ei
and ej are mutually exclusive, that is {¬(fei

> 0 ∧ fej
> 0)} ∈ C. Then P = ei ·Q · ej can

be refined to (ei ∪ ej) ·Q, while for path expressions we would be stuck with (ei ·Q)∪ (Q · ej).

3.3 Cost Expressions
Let c : E → N ∪ {−∞} be a cost function, which assigns to each edge e ∈ E of a CFG
G = 〈V,E〉 its maximum execution cost ce. 3 Then we can derive a symbolic expression for
the (possibly approximated) maximum cost c(P (s, t)) over all paths from the entry node s
to the exit node t from the frequency expression P (s, t) (or a sound approximation thereof),
by replacing the underlying algebraic structure with 〈N ∪ {−∞},max,+,−∞, 0〉, which
we denote as Nmax in the following. Nmax is also a commutative dioid like the algebra of
frequency expressions, with a total order defined on its elements by the order of the natural
numbers, or equivalently, using the max operation: a ≤ b if max(a, b) = b.

While in general for the frequency expression (a∪ b)N =
⋃N
k=0 a

k bN−k, the total order of
the elements in Nmax allows for following simplification due to monotonicity: N ∗max(a, b) =
max(N ∗ a,N ∗ b). Furthermore, as max(N ∗ a, (N + 1) ∗ a) = (N + 1) ∗ a, only the upper
bound U in a frequency expression P [L,U ] needs to be considered when calculating the
maximum cost. As a consequence, in Nmax we cannot conveniently reason about edge (or
node) frequencies, but only about (possibly approximated) path costs.

Table 1 provides a comparison of path-, frequency- and cost expressions.

4 Construction and Evaluation of WCET Formulas

In this section, we first give a concise description on how to construct path expressions in
our framework, then present the refinement of frequency expressions to account for flow
constraints, and finally describe the normalization of frequency expressions and our partial
evaluation framework.

4.1 Building Path Expressions
We first consider an acyclic CFG G = 〈V,E〉 with entry node s and exit node t. We want to
obtain a complete path expression P (s, t), approximating the set of valid paths from s to t.
We recursively define P (v, w) as

P (v, w) =
{
ε if v = w⋃

(w′,w)∈E (P (v, w′) · (w′, w)) if v 6= w

3 Given execution costs cv of basic blocks v ∈ V of the CFG, edge costs can be derived by attaching cv

either to all of its incoming edges or all of its outgoing edges.



B. Huber, D. Prokesch, and P. Puschner 97

Table 1 Comparison of path expressions, frequency expressions and cost expressions.

Path expressions
Interpretation Language of structurally possible program paths
Algebraic structure Kleene algebra 〈E,∪, ·,∗ , ∅, ε〉 (idempot. semiring with Kleene closure)

∪ is associative, commutative and idempotent; · is associative
· is distributive w.r.t. ∪: (a∪b)·c = (a·c)∪(b·c) , a∪(b·c) = (a·b)∪(a·c)
Zero element: a ∪ ∅ = ∅ ∪ a = a; Identity element: a · ε = ε · a = a

∅ annihilates E w.r.t. · (a · ∅ = ∅ · a = ∅)
∅∗ = ε∗ = ε

Example (e3,4e4,8) ∪ (e3,5e5,6(e6,7e7,6)∗e6,8)

Frequency expressions
Interpretation Execution frequencies of edges in the CFG
Algebraic structure Similar to path expr., but comm. dioid: · is commutative (a · b = b · a)

Bounds notation for P [L,U ] repetition bounds, P ∗ 7→ P [0,∞]

∅[0,U ] = ∅[0,0] = ε, while ∅[1,U ] = ∅
Example (e3,4e4,8) ∪ (e3,5e5,6e6,8(e6,7e7,6)[0,N ])

Cost expressions
Interpretation Formula for (maximum) execution cost
Algebraic structure Commutative dioid 〈N∪{−∞}, max, +,−∞, 0〉

Due to total order and monotonicity: N ∗max(a, b) = max(N ∗a, N ∗b)
Example max(NB4, NB5) + N(N−1)

2 B7

As we assumed the CFG to be acyclic, there is a partial order ≺ on the nodes of the
graph with w ∈ pred(v)⇒ w ≺ v, for all v, w ∈ V . By determining this topological order,
and representing each expression P (s, v) only once in memory, we obtain a closed form for
P (s, t) in time and space linear in the size of the CFG.

Now consider a CFGs G = 〈V,E〉 with reducible loops. We observe that the set of
cycle-free paths (i.e., those which do not include back edges) is generated by calculating
P (s, t) for the forward CFG GF = 〈V,EF 〉. Furthermore, all cycles are composed of paths
starting from a loop header and ending at the corresponding back edge. Therefore, in the
general case we recursively define P (v, w) as

P (v, v) =
{
ε if v is not a loop header⋃

(v′,v)∈E\EF P (v, v′) · (v′, v) if v is header of loop L

P (v, w) =
⋃

(w′,w)∈EF

(P (v, w′) · (w′, w)) · P (w,w)∗ if v 6= w

The construction of path expressions simply takes the union of all paths leading to
predecessors. However, those paths will often have a common prefix, namely the path
expression from the entry to the dominator of predecessors. Therefore, we factor out
common prefixes during construction, using the equivalence

⋃
j (P (s, d) · P (d, j)) = P (s, d) ·(⋃

j P (d, j)
)
.

I Example 1. Consider the example presented in Section 1.1. Let ei,j denote the edge from
Bi to Bj . Then applying the construction algorithm, and factoring out the common prefix

WCET’12



98 A Formal Framework for Precise Parametric WCET Formulas

P (B2, B3) leads to the following path expressions:

P (B1, B9) = e1,2P (B2, B2)∗e2,9

P (B2, B2) = e2,3P (B3, B8)e8,2

P (B3, B8) = (e3,4e4,8) ∪ (e3,5e5,6P (B6, B6)∗e6,8)
P (B6, B6) = e6,7e7,6

4.2 Constraint Refinement of Frequency Expressions
The formulas derived so far express possible paths constrained only by the program structure
as obtained from the CFG. In order to calculate a (precise) WCET bound, we need to take
flow constraints into account. As argued before, frequency expressions are a well-suited
formalism for this task. Therefore, we interpret the initial path expression as frequency
expression before constraining the formula.

4.2.1 Constraint Refinement
The following observation illustrates how to take local frequency bounds into account.
I Observation 1 (Constraint Refinement). Given a a frequency expression P (s, t) = R ·
Q(u, v)[A,B], and a frequency constraint C =

∑
(u′,u)∈E f(u′,u) ≤ N , C ∈ C. Then the

frequency expression P ′(s, t) = R ·Q(u, v)[A,N ] is a sound approximation of P (s, t, C).
Due to the way frequency expressions are constructed, it is thus always possible to account

for constraints which limit the frequency of a node relative to its immediate dominator. For
non-empty frequency expressions Q(v, v), corresponding to the body of a loop, the constraint
only needs to refer to total frequency of the loop’s back edges. Local constraints, in particular
simple loop bounds, should always be applied to frequency expressions, in order to facilitate
the calculation of a numeric WCET bound.

I Example 2. Consider the path expressions presented in Example 1, interpreted as frequency
expressions. In the motivating example, we have f(e8,2) ≤ N ∈ C for all paths from B1 to
B9. Applying Observation 1, we thus get

P ′(B1, B9, C) = e1,2P (B2, B2)[0,N ]e2,9

4.2.2 Global Bounds
Frequency expressions also allow us to take non-local frequency bounds into account. We
start with the following two observations:
I Observation 2. Given a frequency expression P (s, t) = (Q ·R)[A,B], the expression P ′(s, t) =
Q[A,B] ·R[A,B] is a sound approximation of P (s, t).
I Observation 3. Given a frequency expression P (s, t) = ((Q ·R) ∪ S)[A,B]. Then P ′(s, t) =
Q[0,B] · (R ∪ S)[A,B] is a sound approximation of P (s, t).

These observations allow to move subexpressions to an outer scope, which in turn enables
the inclusion of non-local loop bounds. The following example illustrates this technique.

I Example 3. Consider the frequency expression from Example 2. Applying both transfor-
mations presented above to lift P (B6, B6) gives

P ′′(B1, B9) = e1,2P
′′(B2, B2)[0,N ]P (B6, B6)[0,N(N−1)]e2,9

P ′′(B2, B2) = e2,3 ((e3,4e4,8) ∪ (e3,5e5,6e6,8)) e8,2
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Then applying constraint refinement to P (B6, B6) results in

P ′′′(B1, B9) = e1,2P
′′(B2, B2)[0,N ]P (B6, B6)[0, 1

2N(N−1)]e2,9

Note, that while using the first observation might improve the WCET bound, applying
the second or third one may make it worse. Thus it is necessary to devise a heuristic which
decides whether a non-local constraint should be applied. Another alternative to overcome
possible degradation is to mimic the IPET approach and split the formula, distinguishing
the case when the non-local constraint is useful, and the one when the local one is better.

4.2.3 Infeasible Pairs
An infeasible node x ∈ V is a node that does not lie on any feasible path from s to t. Given a
frequency expression P (s, t) and an infeasible node x, the set of valid paths σ(P, C) satisfies
the constraint C = {fe = 0 | e ∈ Ex} , C ⊆ C, where Ex is the set of edges incident to x, i.e.,
the frequency of all incoming edges and all outgoing edges of x is zero.

The frequency expression P (s, t)[e 7→ ∅], e ∈ Ex is a sound approximation for P (s, t, C).4
Recall that ∅[0,U ] = ∅[0,0] = ε, while ∅[1,U ] = ∅. With this transformation, every subexpression
P ′ of the form P ′ =

∏
k Pk where some Pk = ∅ will thus be annihilated in P , i.e., any path

that formerly contained x at least once, is pruned from the set σ(P ), while all other paths
are preserved.

An infeasible pair (x, y) is a pair of nodes x, y ∈ V such that any path from s to t that
contains both x and y is infeasible. We can restrict the set of valid paths by taking the union
of the path set in which x is infeasible and the path set in which y is infeasible. Formally, we
obtain a sound approximation for P (s, t, C) where C = {¬

(
fex

> 0 ∧ fey
> 0
)
, ex ∈ Ex, ey ∈

Ey}, C ⊆ C by the frequency expression P (s, t)[ex 7→ ∅] ∪ P (s, t)[ey 7→ ∅], ex ∈ Ex, ey ∈ Ey.
The resulting expression describes the set of paths pruned only of paths that contain both
nodes x and y, and hence is an exact approximation.

Obviously, the size of the formula increases when taking infeasible pairs into account.
Indeed, as WCET calculation is NP-complete in the presence of infeasible pairs5, it is
not possible to obtain a compact formula in the general case. However, by exploiting
commutativity in frequency expressions to reduce the size of the duplicated part of the
formula, and by taking only those infeasible pairs into account which improve the WCET
significantly, we hope keep the size of the formula in reasonable limits.

4.3 Simplification and Partial Evaluation
We use the properties of the frequency expression algebra to normalize frequency and cost
expressions, which provides the basis for the partial evaluation described at the end of this
section.

4.3.1 Normalized Frequency Expressions
In the normalized form, every frequency expression is either a single node, a union

⋃
i Pi of

normalized frequency expressions, or a product
∏
i P

[Li,Ui]
i . The normalized form of frequency

expressions has the following properties:

4 P [e 7→ e′] denotes the frequency expression P , with all occurrences of the subexpression e replaced by
e′.

5 As can be shown by a polynomial-time reduction of W2SAT.
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Subsumption (Unions): Given two products P =
∏
i P

[Li,Ui]
i and Q =

∏
j Q

[Lj ,Uj ]
j , if for

every Q[Lj ,Uj ]
j there is a P [Li,Ui]

i with Pi = Qj , Li ≤ Lj and Uj ≤ Ui, then P subsumes
Q (σ(Q) ⊆ σ(P )) and thus P ∪Q = P . For every normalized frequency expression

⋃
i Pi,

each Pi is a product, and if Pi subsumes Pj , Pj is not present in the union.
Frequency Product (Products): The product P [L1,U1] ·P [L2,U2] simplifies to P [L1+L2,U1+U2],
and (

∏
i P

[L1,U1]
i )[L2,U2] simplifies to

∏
i P

[L1L2,U1U2]
i . Furthermore, we apply P ·

⋃
∅ =

⋃
∅

whenever possible. Therefore, in every frequency expression
∏
i P

[Li,Ui]
i , all Pi are distinct,

and each Pi is either a non-empty union of frequency expressions or a single node.

4.3.2 Partial Evaluation

Given a frequency expression P (s, t) for a control flow graph, we perform partial evaluation
to obtain a numeric or parametric formula for the WCET. We call this step partial evaluation,
as the evaluation functions c and f are allowed to be partial.

For evaluation purposes, we introduce a special node c, which represents one unit of
cost. The evaluation algorithm takes a frequency expression P (s, t), a partial cost function
c (assigning costs to edges), and a frequency evaluation function f , transforming symbolic
frequencies (either into numeric ones or different symbolic frequencies, e.g. to reflect some
parameter of interest, like size of an input array).

First, all edges e where c(e) is defined are replaced by cc(e), and all expressions P [L,U ] are
simplified to P [f(L),f(U)]. The actual evaluation then corresponds to the normalization of
the frequency expression, as described before. This is sufficient for full evaluation, while for
partial evaluation the size of the formula can be further reduced by additional simplifications,
which exploit the total order of numeric cost values.

Given the result of the partial evaluation, we would like to obtain information on node
frequencies in the evaluated formula. In principle, this can be achieved by keeping references
to original expressions during simplifications, and keeping track of selected branches in unions,
though this has not been elaborated yet.

5 Experiments

In order to validate the applicability of our parametric execution time formula framework, we
implemented a prototype on top of the Open Timing Analysis Platform [12]. This evaluation
framework is based on the LLVM compiler framework, and extracts description of machine
code CFGs from the internal compiler representation. Flow facts are provided by the SWEET
[10] analysis tool, developed at the Mälardalen Real-Time Research Center (MRTC) which
is integrated in our evaluation framework.

For our preliminary experiments, we generate machine code for the ARM instruction set
and use a simple cost model (one cycle per instruction). In Table 2, we present results for
three benchmarks which feature triangle loops. One is adapted from the motivating example
in Section 1.1, and two are taken from the MRTC benchmark set.

In these experiments, formulas are parametric with respect to loop bounds (first column).
Local bounds Li constrain the loop iteration count relative to the loop entry frequency,
global bounds Gi are relative to the function entry. The fourth column displays the result of
evaluating the formulas with the specified numeric loop bounds.

We compare the standard approach which only uses simple loop bounds (local bounds
only), the result which only uses bounds relative to the function entry (global bounds only),
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Table 2 Results of the comparison of different approaches to parametric analysis.

approach formula cycles

intro_example local bounds only 6 + 12L1 + L1 ∗max(28, 19L6) 1836
L1 = 10, L6 = 9, global bounds only 6 + 45L1 + 19G6 1311
G6 = 45 lifting inner loops 6 + 40L1 + 19G6 1261

IPET — 1121
insert_sort local bounds only 29 + 14L1 + 11(L1 L3) 1046
L1 = 9, L3 = 9, lifting, global 29 + 14L1 + 11G3 650
G3 = 45 IPET — 650
janne_complex local bounds only 32 + 14L4 + 22L2 + 14(L2 L4) 1216
L2 = 8, L4 = 8, global bounds only 18 + 8L2 + 15G4 262
G4 = 12 lifting inner loops 18 + 8L2 + 14G4 250

IPET — 250

and the transformation moving nested loops to the outer scopes (lifting inner loops), described
in Section 4.2.2.

6 Conclusion

We presented a framework for the calculation of symbolic execution time formulas, which
provides a solid foundation for parametric WCET analysis. We construct path expressions
from control flow graphs, and then add commutativity to obtain frequency expressions. The
key idea is that while frequency expressions are easier to work with than path expressions,
they still represent a sound approximation to the set of possible execution paths. By the
virtue of this property, it is possible to selectively include additional flow constraints, for
example global loop bounds or infeasible pairs, and prove this refinements correct.

The preliminary experiments have been encouraging, and the resulting formulas indeed
reflect our intuition, and suggest that this approach is not only theoretically sound, but
also works well in practice. We are eager to extend it to a fully-featured implementation,
supporting context-sensitive supergraphs, feedback on worst-case frequencies, and additional
formula refinements. There are many interesting applications to parametric WCET analysis,
especially at design time, and we believe that this framework provides a good basis for further
improving the state-of-the art in this area.
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