7 research outputs found

    Clinical proteomics in obstetrics and neonatology

    No full text
    Clinical proteomics has been applied to the identification of biomarkers of obstetric and neonatal disease. We will discuss a number of encouraging studies that have led to potentially valid biomarkers in the context of Down's syndrome, preterm birth, amniotic infections, preeclampsia, intrauterine growth restriction and obstructive uropathies. Obtaining noninvasive biomarkers (e.g., from the maternal circulation, urine or cervicovaginal fluid) may be more feasible for obstetric diseases than for diseases of the fetus, for which invasive methods are required (e.g., amniotic fluid, fetal urine). However, studies providing validated proteomics-identified biomarkers are limited. Efforts should be made to save well-characterized samples of these invasive body fluids so that many valid biomarkers of pregnancy-related diseases will be identified in the coming years using proteomics based analysis upon adoption of ‘clinical proteomics guidelines’

    Systems biology combining human- and animal-data miRNA and mRNA data identifies new targets in ureteropelvic junction obstruction

    No full text
    International audienceAbstractBackgroundAlthough renal fibrosis and inflammation have shown to be involved in the pathophysiology of obstructive nephropathies, molecular mechanisms underlying evolution of these processes remain undetermined. In an attempt towards improved understanding of obstructive nephropathy and improved translatability of the results to clinical practice we have developed a systems biology approach combining omics data of both human and mouse obstructive nephropathy.ResultsWe have studied in parallel the urinary miRNome of infants with ureteropelvic junction obstruction and the kidney tissue miRNome and transcriptome of the corresponding neonatal partial unilateral ureteral obstruction (UUO) mouse model. Several hundreds of miRNAs and mRNAs displayed changed abundance during disease. Combination of miRNAs in both species and associated mRNAs let to the prioritization of five miRNAs and 35 mRNAs associated to disease. In vitro and in vivo validation identified consistent dysregulation of let-7a-5p and miR-29-3p and new potential targets, E3 ubiquitin-protein ligase (DTX4) and neuron navigator 1 (NAV1), potentially involved in fibrotic processes, in obstructive nephropathy in both human and mice that would not be identified otherwise.ConclusionsOur study is the first to correlate a mouse model of neonatal partial UUO with human UPJ obstruction in a comprehensive systems biology analysis. Our data revealed let-7a and miR-29b as molecules potentially involved in the development of fibrosis in UPJ obstruction via the control of DTX4 in both man and mice that would not be identified otherwise

    Mapping of the amniotic fluid proteome of fetuses with congenital anomalies of the kidney and urinary tract identifies plastin 3 as a protein involved in glomerular integrity

    No full text
    Congenital anomalies of the kidney and the urinary tract (CAKUT) are the first cause of chronic kidney disease in childhood. Several genetic and environmental origins are associated with CAKUT, but most pathogenic pathways remain elusive. Considering the amniotic fluid (AF) composition as a proxy for fetal kidney development, we analyzed the AF proteome from non-severe CAKUT (n = 19), severe CAKUT (n = 14), and healthy control (n = 22) fetuses using LC-MS/MS. We identified 471 significant proteins that discriminated the three AF groups with 81% precision. Among them, eight proteins independent of gestational age (CSPG4, LMAN2, ENDOD1, ANGPTL2, PRSS8, NGFR, ROBO4, PLS3) were associated with both the presence and the severity of CAKUT. Among those, five were part of a protein-protein interaction network involving proteins previously identified as being potentially associated with CAKUT. The actin-bundling protein PLS3 (plastin 3) was the only protein displaying a gradually increased AF abundance from control, via non-severe, to severe CAKUT. Immunohistochemistry experiments showed that PLS3 was expressed in the human fetal as well as in both the fetal and the postnatal mouse kidney. In zebrafish embryos, depletion of PLS3 led to a general disruption of embryonic growth including reduced pronephros development. In postnatal Pls3-knockout mice, kidneys were macroscopically normal, but the glomerular ultrastructure showed thickening of the basement membrane and fusion of podocyte foot processes. These structural changes were associated with albuminuria and decreased expression of podocyte markers including Wilms' tumor-1 protein, nephrin, and podocalyxin. In conclusion, we provide the first map of the CAKUT AF proteome that will serve as a reference for future studies. Among the proteins strongly associated with CAKUT, PLS3 did surprisingly not specifically affect nephrogenesis but was found as a new contributor in the maintenance of normal kidney function, at least in part through the control of glomerular integrity. (c) 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
    corecore