30 research outputs found

    High resolution phase contrast x-ray radiography

    Get PDF
    © 2006 Benedicta Arhatari.The conventional approach for x-ray radiography is absorption contrast. In recent years a new approach that eliminates the usual requirement for absorption and allows the visualization of phase based on refractive index features in a material has been demonstrated. This so-called “phase contrast imaging” has now been applied using a wide range of radiation and samples. In this work we are motivated by the need to find optimal conditions for achieving high quality phase contrast images. We consider image formation using the free space propagation of x-rays from a point source passing through a sample. This imaging model is a lens-less configuration and, as such, is very useful for x-ray wavelengths where lenses are difficult to fabricate. Although no lenses are used, image magnification is still achieved due to the expansion of the wavefront as it propagates from the point source illumination. The short wavelength and penetrating power of x-rays make them ideal for non-destructive studies of microscopic samples. However, these techniques are also important for investigating larger, non-microscopic samples

    Soft-tissue differentiation and bone densitometry via energy-discriminating X-ray microCT

    No full text
    X-ray computed tomography (CT) is an important diagnostic tool in medicine as well as being an essential research technique for animal imaging and bioscience. The key aim of this study is to assess the effectiveness, in both simulation and experiment, of differentiating soft tissue from bone as well as bone densitometry, using energydiscriminating X-ray detection. Polychromatic sources, such as standard X-ray tubes, can produce similar CT numbers for materials with different compositions, making differentiation and quantification of tissue and bone extremely challenging. In addition, 'beam-hardening' which occurs due to the relative increase in the attenuation of low energy photons compared to high energy photons, can create significant CT artifacts. To improve material contrast and eliminate beam hardening, a number of different approaches have been developed. These include dual-energy CT using two different X-ray tube voltages, photon beam filtration, and post-processing of the data. Here we present an alternative approach using the photon counting PiXirad detector. Simulations are used to establish optimal parameters for data acquisition. This is followed by tomographic experiments performed on a phantom and a mouse embryo. The energy discriminating properties of the detector are exploited to avoid beam-hardening artefacts, to differentiate soft-tissue and bone within the mouse embryo, and to quantify bone density. Compared with polychromatic CT using an integrating detector this approach yields a number of significant advantages for materials specific imaging and quantification

    Materials Separation via the Matrix Method Employing Energy-Discriminating X-ray Detection

    No full text
    The majority of lab-based X-ray sources are polychromatic and are not easily tunable, which can make the 3D quantitative analysis of multi-component samples challenging. The lack of effective materials separation when using conventional X-ray tube sources has motivated the development of a number of potential solutions including the application of dual-energy X-ray computed tomography (CT) as well as the use of X-ray filters. Here, we demonstrate the simultaneous decomposition of two low-density materials via inversion of the linear attenuation matrices using data from the energy-discriminating PiXirad detector. A key application for this method is soft-tissue differentiation which is widely used in biological and medical imaging. We assess the effectiveness of this approach using both simulation and experiment noting that none of the materials investigated here incorporate any contrast enhancing agents. By exploiting the energy discriminating properties of the detector, narrow energy bands are created resulting in multiple quasi-monochromatic images being formed using a broadband polychromatic source. Optimization of the key parameters for materials separation is first demonstrated in simulation followed by experimental validation using a phantom test sample in 2D and a small-animal model in 3D

    CHD7 deficiency in " Looper", a new mouse model of CHARGE syndrome, results in ossicle malformation, otosclerosis and hearing impairment

    Get PDF
    CHARGE syndrome is a rare human disorder caused by mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7). Characteristics of CHARGE are varied and include developmental ear and hearing anomalies. Here we report a novel mouse model of CHD7 dysfunction, termed Looper. The Looper strain harbours a nonsense mutation (c.5690C>A, p.S1897X) within the Chd7 gene. Looper mice exhibit many of the clinical features of the human syndrome, consistent with previously reported CHARGE models, including growth retardation, facial asymmetry, vestibular defects, eye anomalies, hyperactivity, ossicle malformation, hearing loss and vestibular dysfunction. Looper mice display an otosclerosis-like fusion of the stapes footplate to the cochlear oval window and blepharoconjunctivitis but not coloboma. Looper mice are hyperactive and have vestibular dysfunction but do not display motor impairment

    An intronic mutation in Chd7 creates a cryptic splice site, causing aberrant splicing in a mouse model of CHARGE syndrome

    No full text
    Abstract Alternate splicing is a critical regulator of gene expression in eukaryotes, however genetic mutations can cause erroneous splicing and disease. Most recorded splicing disorders are caused by mutations of splice donor/acceptor sites, however intronic mutations can affect splicing. Clinical exome analyses largely ignore intronic sequence, limiting the detection of mutations to within coding regions. We describe ‘Trooper’, a novel mouse model of CHARGE syndrome harbouring a pathogenic point mutation in Chd7. The mutation is 18 nucleotides upstream of exon 10 and creates a cryptic acceptor site, causing exon skipping and partial intron retention. This mutation, though detectable in exome sequence, was initially dismissed by computational filtering due to its intronic location. The Trooper strain exhibited many of the previously described CHARGE-like anomalies of CHD7 deficient mouse lines; including hearing impairment, vestibular hypoplasia and growth retardation. However, more common features such as facial asymmetry and circling were rarely observed. Recognition of these characteristic features prompted manual reexamination of Chd7 sequence and subsequent validation of the intronic mutation, highlighting the importance of phenotyping alongside exome analyses. The Trooper mouse serves as a valuable model of atypical CHARGE syndrome and reveals a molecular mechanism that may underpin milder clinical presentation of the syndrome
    corecore