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The conventional approach for x-ray radiography is absorption contrast. In recent

years a new approach that eliminates the usual requirement for absorption and allows

the visualization of phase based on refractive index features in a material has been

demonstrated. This so-called ”phase contrast imaging” hasnow been applied using a

wide range of radiation and samples. In this work we are motivated by the need to

find optimal conditions for achieving high quality phase contrast images. We consider

image formation using the free space propagation of x-rays from a point source passing

through a sample. This imaging model is a lens-less configuration and, as such, is very

useful for x-ray wavelengths where lenses are difficult to fabricate. Although no lenses

are used, image magnification is still achieved due to the expansion of the wavefront as

it propagates from the point source illumination. The shortwavelength and penetrating

power of x-rays make them ideal for non-destructive studiesof microscopic samples.

However, these techniques are also important for investigating larger, non-microscopic

samples.

An analysis, based on the sensitivity of the method to different feature sizes in the

object, was used to successfully develop an image contrast model. It is developed for

pure phase samples and samples with a small amount of absorption. The effects of

partial coherence are explicitly incorporated. The resultof the model is a prediction of

the visibility of features of a certain size, which is compared with experimental results.

The model gives rise to an objective filtering criterion for optimization of image quality

and which allows for the combination of retrieved phase images in the presence of noise

obtained at different distances to produce a single high quality image. The technique

was applied experimentally using a laboratory micro-focusx-ray source illuminating

a series of periodic spaced grid lines on a polyimide film and aseries of copper grid

meshes and excellent agreement with the model is found. We apply the technique to

metal failure detection by imaging micro cracks and corrosion in an aluminium sheet.

The model has also been extended to an analysis of 3D phase contrast tomography.

We define a reconstruction quality factor which allows us to optimize the tomographic

reconstruction for given feature sizes in an object.
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Chapter 1

Introduction

1.1 Statement of problem

Phase methods may be categorized in two broad ways: the forward problem and the in-

verse problem. The forward problem describes systems for which the phase is rendered

visible but does not yield quantitative information about the phase. Usually it is done

by measuring intensity which contains phase information. In the forward problem, the

wave equation and knowledge of the intensity and phase of themonochromatic wave

in the sample plane are used to calculate the intensity distribution downstream of the

sample (e.g. on the detector plane). The inverse problem, onthe other hand, yields

quantitative phase information with phase retrieval algorithms using the measured in-

tensity. Quantitative information about the phase of the wave exiting the sample can,

for example, be retrieved from a set of Fresnel diffraction patterns recorded at different

distances. In this case, the free space propagation technique, the phase of the field is

determined indirectly.

The free space propagation technique uses a unique contrastmechanism in compar-

ison with other phase sensitive imaging techniques that hasadvantages concerning the

simplicity of the experimental set-up, which requires no optics to form images. This

technique is very useful at x-ray wavelengths where lenses are difficult to fabricate

and, as there are no optical elements, produces no abberations. This technique is ap-

plicable across a broad range of areas and has become an area of active development

1



2 CHAPTER 1. INTRODUCTION

[Sni95; Wil96; Ste99; McM01].

Using free space propagation based phase contrast, high quality imaging becomes a

possibility for many research application. Good contrast with high resolution imaging

is still being pursued in current x-ray imaging research [Bur84; Coe92; Sch94; Sni95;

Pog97; Clo99a; McM03a]. The need to find a suitable solution for improving image

quality and how it varies with different spatial frequencies has been a motivating factor

in undertaking the present study. The aim of this research istherefore to develop an

imaging model that explicitly incorporates a host of realistic experimental effects, in-

cluding a partial coherence, and which can be applied to bothpure phase samples and

samples with some degree of absorption (complex objects).

Our investigation of x-ray imaging is done in the Fresnel regime, with a coaxial

radiation source, sample and detector, and where the phase changes introduced to the

radiation field by the sample are sufficiently small that the radiation remains paraxial.

The visibility function is used extensively to characterize the optimal imaging condi-

tions of the systems investigated in this thesis. The main approach in this research

study will be to undertake theoretical analysis then to simulate numerically and to ex-

perimentally test the theoretical results using a micro focus x-ray laboratory source and

a synchrotron source.

1.1.1 Difference between prior and our research

A general formalism for free space propagation based phase contrast using an x-ray

point source has been developed [Gui77; Wil96; Pog97; Gur98; Wu03] that covers both

the near Fresnel regime and the holographic regime. In this work we explicitly include

the source spatial and spectral distribution into the formalism we developed . Another

problem in x-ray phase contrast radiography imaging is thatthe x-ray radiography im-

age for most objects will display a combination of phase and absorption contributions

[Wu03; Pog97]. Some formalisms show only the role of phase orabsorption contribu-

tions. In this work we develop a formalism that explicitly show separately the phase

and absorption contributions to the image contrast.
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1.2 Research outline

This investigation starts with an overview of past and present research concerning phase

imaging and phase measurement (Chapter 2). Phase contrast imaging as a new ap-

proach in x-ray radiography is described and contrasted with the conventional absorp-

tion based methods. Some relevant basic theories about diffraction and imaging will be

also discussed. Then, phase contrast imaging with hard x-rays as a forward problem

is described. An overview of the existing phase retrieval methods to solve the inverse

problem is also provided. We apply these phase retrieval methods throughout this study.

Chapter 3 describes the instrumentation we used in our experiment in phase sen-

sitive radiography. The micro focus x-ray laboratory source we used is described in

detail including its polychromatic energy spectrum, focusing of the source and its focal

spot size. The sensitivity, noise characteristics and spatial resolution of the detector is

described. The role of resolution and contrast as two important factors in quantifying

the quality of an image are also discussed.

In the forward problem, one determines an equation which maps the complex wave

function over the sample to the intensity distribution downstream of the sample. We

simplify the matter for short propagation distances, wherewe are allowed linearize the

Fresnel integral. This description of the phase contrast imaging technique is described

in Chapter 4 for a pure phase sample. The model also incorporates the extended size of

the source. This formalism is particularly suitable for a laboratory based micro focus

x-ray source where the size of the source and magnification factor due to projection is

important. In this case, the distance from the sample to the image plane is relatively

large compared to the sample to source distance and results in Fresnel diffraction of the

wave. The distances along the optical axis are very large compared to the transverse

distances subtended by the image so that the small angle approximation can be used

with good accuracy. This formulation predicts the contrastin the intensity distribution

recorded at the image plane. After we tested the model experimentally using a series

of periodic grid lines on a polyimide film, it was used to definean objective filtering

criterion that can be applied to improve the image quality bycombining phase images

obtained at different propagation distances in order to recover a single high-quality
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image. The application of this objective filtering criterion is presented for phase images

in the presence of noise and using experimental neutron data.

In Chapter 5, an extended theoretical framework of the free space propagation phase

contrast mechanism is developed for complex objects. That is, the object has both

phase and absorption contrast. The complex index of refraction is used to express the

distribution of intensity and phase directly after the sample. A sample illuminated by an

extended source is imaged under geometric magnification some distance downstream of

the sample. In this way, small samples can be imaged under high magnification without

the need for lenses. The phase and absorption contributionsare clearly apparent in

this formalism as a function of object size and magnification. Simulation results are

used to test this contrast formalism. The imaging model was tested using a series of

copper grid meshes using a laboratory micro focus x-rays source to study the agreement

between theory and experiment. The polychromaticity of thex-rays from a micro focus

x-ray tube is explicitly investigated. In some cases, x-rayphase contrast experiments

need to be more carefully designed to achieve an optimum contrast. Application of the

developed model to image micro cracks and corrosion in aluminium sheet demonstrate

that this analytical form of imaging is useful for identifying the optimum parameters

for a given radiography experiment.

In Chapter 6, an analytical model is developed for 3D phase contrast tomography of

a pure phase object. This is an extension of the two dimensional formalism in chapter 4.

We model the angular dependent phase change which arises after repeating the projec-

tion radiography for a large number of angular positions of the sample. By measuring

the intensities and by retrieving the phase distribution ineach of the angular positions,

we can reconstruct quantitative information about the 3D real refractive index distribu-

tion in the sample. The theory quantifies the reconstructionquality as a function of the

spatial frequencies present in the object. A definition of image quality is introduced

to provide a comparison between a reconstruction and the real distribution of the ob-

ject. We then simulate a tomography experiment numerically, apply our model and

hence assess the quality of the reconstruction. Experimental data of different diameter

of polystyrene micro spheres is used in this work to verify the theory.
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Finally, Chapter 7 summarizes the results of the research.
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Chapter 2

X-ray imaging

This chapter describes an overview of past and present research concerning phase con-

trast imaging and some relevant theories. We begin in Section 2.1 with a brief descrip-

tion of conventional, absorption -based, x-ray radiography and include phase contrast as

a new approach. In Section 2.2, we describe some relevant basic theories about diffrac-

tion and imaging important to this work. Various techniquesfor directly encoding phase

information and measuring these intensities will be described in Section 2.3. Finally,

phase measurement including phase retrieval techniques will be discussed in Section

2.4.

2.1 X-ray radiography

The enormous benefit of x-ray radiography has been recognized since the discovery

of x-rays. X-ray radiography plays a central role in many diverse areas such as in-

dustrial inspections, medicine, materials science, chemistry and bio-medical imaging.

Examples of x-ray radiography include: x-ray screening of baggage, mammography

for tumor or cancer detection, x-ray radiology for medical diagnostic purposes, x-ray

radiography for detecting failures in materials such as cracks, porosities and welding

imperfections. Due to the high penetrating power of x-rays,this technique can be used

as a non-destructive imaging technique. X-ray radiographycan produce images of the

internal structure of an object, without damaging the object [Bur84]. Due to their short

7



8 CHAPTER 2. X-RAY IMAGING

wavelength, x-rays can detect many kinds of microscopic scale samples.

For many years, the methods of x-ray radiography were based on the absorption of

the radiation [Wat79; Hal79]. The contrast in these images is based on different x-ray

absorption in different parts of the sample. In this approach, a film or other detector is

placed directly after the sample, where the geometric shadow of highly absorbing parts

of object produces intensity contrast. Conventional absorption radiography is not an

ideal imaging technique as it is based on the inhomogeneous x-ray dose deposition and

so can require long exposures and a relatively high x-ray dose to get good contrast. This

is generally undesirable, especially in radiological clinical imaging that may involve

significant risks for a patient.

X-ray absorption depends on the electron density of the material through which it

is passing. X-rays are most strong absorbed by high Z elements, while small density

materials leads to poor contrast.

2.1.1 Phase contrast as a new approach

Absorption is not the only form of interaction between x-rays and matter. Phenomena

like refraction relates to the phase of the x-ray waves and represents an interaction which

does not deposit energy in the sample. So it is desirable to use phase shifts produced by

the object as a new mechanism. Such phase shifts (or gradients) result inrefractionof

the x-ray beam, which in turn produces changes in the propagated intensity that can be

detected. This effect is referred to asphase contrast. Furthermore, phase information

becomes relatively more important at higher energies and will discussed later in this

section. Thus, at higher energies, the visibility of a weakly absorbing object can be

very good due to phase contrast [Wil96]. Such a technique is also well suited to imaging

features where there is a sudden change in material density and/or material thickness

across the x-ray beam, such as for edges and material discontinuities [Clo97a].

Phase contrast imaging has recently been the subject of considerable worldwide re-

search, using both laboratory sources and synchrotrons [Ste99; Sni95; Hwu02; Clo01;

Mom03]. Work using a synchrotron has shown that refraction induced x-ray contrast

is a very valuable analytical tool, allowing phase to be measured [Nug96; Gur00], and



2.1. X-RAY RADIOGRAPHY 9

allowing phase tomographic images to be acquired [Clo99a; McM03b; Spa99; May03].

In laboratory scale sources, Wilkins and co workers [Wil96;Gao98] showed that refrac-

tion can significantly augment the image contrast. Using an ultrafast laser-based system

where hard x-rays can be produced much more cheaply than witha synchrotron, Toth

and Kieffer [Tot05] showed that phase contrast imaging produced edge enhancement

and revealed details that are difficult to observe or even undetectable in absorption im-

ages. For example, Figure 2.1 shows the difference between an absorption contrast and

the corresponding phase contrast image of a bee taken with 17keV photons. For in-

dustrial applications, thermal neutron phase radiography[All00; McM01] has also been

developed. In such cases, phase contrast effects can enablethe enhanced detection for

cracks or edges in metal samples.

Figure 2.1: Direct comparison between (a) an absorption contrast and (b) a phase contrast imag-

ing of a bee. The arrows indicate features enhanced by phase contrast imaging. Source [Tot05].

In summary, the visibility of an image can be significantly improved using phase

contrast imaging. This image improvement is particularly noticeable for edges and is

due to the larger variations in the real part of the complex refractive index across edges

in the sample. Furthermore, for sources with sufficient spatial coherence, this phase

contrast based imaging can provide excellent contrast for imaging at micrometer and

sub micrometer scales.



10 CHAPTER 2. X-RAY IMAGING

Conceptual background

The full description of the interaction of an x-ray beam witha material can be reason-

ably complex. In the energy range in which we are interested -a few tenths to a few

tens of a keV- the dominant processes include photoelectricabsorption, refraction and

coherent and incoherent scattering of the beam. The x-ray beam - sample interaction in

our case for an amorphous material can be described in a simplified way by a complex

transmission function. This is the complex ratio of the waveexiting and entering the

sample. It is determined by the projection of the complex refractive index distribution,

n = 1 − δ + iβ 1, within the sample. The refractive index of x-rays containsboth

a real part and imaginary part. The real part,δ, of the refractive index is responsible

for refraction and results in a phase shift, while the magnitude of imaginary part,β,

determines absorption.

The choice of+iβ is consistent with a wave description for a plane wave in a ma-

terial of refractive indexn, such thatf(z, t) = f0exp[−i(ωt − knz)], wheref0 is the

amplitude,ω is the wave frequency,t is time,k is the wave number andz is the thick-

ness or propagation distance. Substituting the complex refractive index into the plane

wave equation we get:

f(z, t) = f0 exp[−iωt + ik(1 − δ + iβ)z]

f(z, t) = f0e
(−iωt+ikz)

︸ ︷︷ ︸
vacuum propg.

e−ikδz
︸ ︷︷ ︸
φ−shift

e−kβz
︸ ︷︷ ︸
decay

(2.2)

where the first exponential factor represents the phase advance had the wave been prop-

agated in vacuum. The second exponential factor representsthe modified phase shift

1The refractive index can be expressed as [Par54]:

1 − δ + iβ = 1 − r0

2π
λ2
∑

j

njfj (2.1)

wherer0 = 2.8179 x 10−15m is the classical electron radius, the summation is over allthe atoms of form
j, with nj as the atom number density andfj is the scattering factor for that atom. For forward scattering,
the atomic scattering factor has the form:fj = f1 − if2, wheref1 is for calculating the decrement of the
real part of the refractive index andf2 is for calculating the imaginary part.

We can use an effectiveβ which includes the contribution to the beam that fails to enter a detector due
to scattering as well as the photoelectric absorption. However, we found that for most of the materials
and energies considered in this work the standard description (given in Equation 2.1) for photoelectric
absorption was sufficient.
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due to the medium and the third factor represents the decay ofthe wave amplitude.

Therefore, the intensity and the phase of an x-ray wave are changed by an object as the

x-rays travel through it.

In conventional radiography, image contrast is entirely due to the imaginary com-

ponent of the complex refractive index, i.e., due to absorption. Such images ignore

effects due to the real part of the refractive index, although in principle such effects are

present. The absorption based contrast mechanism can require long exposures of the

imaging radiation to detect small contrast changes. This isparticularly true at higher

energies because the imaginary part of the refractive indexdecreases dramatically for

all elements at high x-ray energy.

Figure 2.2: Comparison of the real part,δ, and imaginary part,β, of the complex refractive index

for aluminium, as a function of the energy. Source http://www-cxro.lbl.gov/opticalconstants/.

In the x-ray region, the real part of the index of refractionn, deviates only slightly

from unity denoted by the termδ. X-rays that pass through materials of differingδ

pick up different relative phases. The resulting phase shift is directly proportional to

the projected electron density of the object. This process of refraction produces a dis-

torted wave front and in turn creates contrast at a detector.Furthermore, the difference

between the real part of the complex refractive index and theimaginary part is more im-

portant as the energy increases. This is shown in Figure 2.2 for aluminium. Compared

to the imaginary part of the index of refraction, the real part becomes relatives more
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important for harder x-rays. In the hard x-ray range (energies above 6 keV) the ratio of

δ/β increases by about three order of magnitude. This means thatthe absorption con-

tribution can be negligible while significant phase contrast is retained. Mechanisms for

achieving and quantifying phase contrast will be discussedin more detailed in Section

2.3.

In phase contrast imaging the coherence of the beam is an important factor in de-

termining image sharpness [Pag98]. In elementary optics, the field at a given point

can in general be considered as a superposition of waves withdifferent frequencies and

different phases. The result is that the concept of phase tends to lose meaning in the

absence of coherence. Coherence is the characteristic of a wave that allows to produce

detectable interference and diffraction effects. The effect of spatially imperfect coher-

ence in the beam is often to convolve the coherent intensity image with a function that

is directly related in extent to the inverse of the coherencelength [Nug91]. This effect

can be seen as a blurring of the image [Hwu02]. The effect of temporally imperfect co-

herence (polychromaticity) in the beam is to also produce blurring in the image, though

this can often be less important than the effect of spatial coherence [Pag98].

In a phase contrast image, the visibility improvement of edges between different

regions (edge enhancement) is related to the propagation distance. Using the Cornu

spiral method for the calculation of Fresnel edge diffraction [Hec97] of an opaque ob-

ject, it is easily seen that the position of Fresnel diffraction maxima and minima is a

function of the distance traveled in the propagation direction of the beam. Therefore,

some propagation distance is necessary to be able to show thefirst intensity maximum,

which produces the image edge enhancement, for refraction as well as for diffraction.

A theoretical description of image structure in terms of Kirchhoff formulation will

be used here to demonstrate some of the important features ofthis technique. A hy-

pothetical object was assumed which has a two dimensional intensity and phase distri-

bution, as shown in Figure 2.32. The input intensity and phase have totally different

distributions and have no relation to each other (a giraffe representing the intensity and

a bird representing the phase shift). These different images were chosen to emphasize

2This figures are photograph taken by a friend, http://www.paswindar.com/ and is used with permis-
sion.
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(a) (b)

Figure 2.3: (a) An image of a giraffe, representing the inputintensity distribution varies from

0.9 (black) to 1 (white) in arbitrary units. (b) An image of a bird, representing the input phase

shift distribution varies from 0 (black) to 2 (white) in radians.

the effect of propagation distance on absorption and phase features in an image. In

practice, the phase distribution of an object will be strongly correlated with the absorp-

tion distribution. The images contain a variety of featuresof different sizes that will be

helpful for showing how the propagation affects various features sizes. The dimensions

of the object were500µm square = 500 x 500 pixels. The x-ray wavelength was 1Å.

The input intensity transmission leaving the test object has a minimum transmission

that∼ 90% of the maximum. The input phase shift leaving the test object varies from

0 (black) to 2 (white) in radians. Figure 2.4 shows the results of the image simulations.

The contact radiograph, Figure 2.4(a), shows only absorption contrast (giraffe image).

Phase contrast (the bird image) becomes more obvious with larger propagation distance,

Figure 2.4(b), while absorption contrast becomes less important. Phase contrast finally

dominates in Figure 2.4(c) where edge effect is clearly observable. The edge enhance-

ment is evidenced by a characteristic black and white fringe. At this x-ray energy, the

phase contrast effect would be clearly discernible at distances beginning from a few

centimeters. In Figure 2.4(d) the multiple fringes associated with interference effects

are starting to be seen. It is no longer possible to attributethe fringes to a specific edge

of the sample. Figure 2.4(e) shows that interference effects dominate to the extent that

the deformed image gives only rather indirect relation to the original phase structure.
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(a) (b) (c)

(d) (e)

Figure 2.4: Simulation of x-ray images for propagation distance of (a) 0.001 m, (b) 0.01 m, (c)

0.1 m, (d) 0.4 m and (e) 1.4 m respectively.

Introduction of spatial frequency

The example in Figure 2.4(c) shows that the image obtained ata short propagation

distance is very sensitive to features such as edges with short scale lengths (high spatial

frequency components). Features with long scale lengths (low spatial frequencies) such

as smooth variations in the object phase, start to have significant contrast at a longer

propagation distance. This is why the mountain background begins to appear in Figure

2.4(d). A simple relation in terms of spatial frequencies for a pure phase object shows

[Pog97; Clo01] that details of sizea with a corresponding spatial frequency ofu = 1/a

give optimum contrast at a distance,z, such that:

z =
1

2λu2
, (2.3)
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whereλ is the wavelength of the imaging radiation. Thus, if we wish to see a feature

size of 5µm, with 1Å x-rays, we need a propagation distance of 0.125 m to get an

optimum contrast. Fortunately, this optimum distance generally falls in the range that is

experimentally accessible. However, the optimum distancewill intrinsically be difficult

to achieve for extremely low spatial frequencies. This is usually due to the physical

limitation in the experiment such as the size of the laboratory. Low spatial frequencies

are thus typically imaged with less contrast. On the other hand, while extremely high

spatial frequencies at their optimum distance would contribute strongly to the image,

their representation in the image will be limited by the detector resolution.

2.2 Basic theory

2.2.1 Fresnel diffraction integrals

The Fresnel formulation of the scalar diffraction integralis used to describe two specific

illuminating wave fields, i.e. the plane wave and the spherical wave cases. Consider

coherent, monochromatic plane wave illumination of wavelengthλ incident on a sample

in the planez = 0, as shown in Figure 2.5. In the paraxial approximation, the plane

��
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��
��

z = 0

z  

sample

detection plane

plane wave

Figure 2.5: Plane wave illumination, the beam are parallel

wave functionfp(x, y, z) at planesz > 0 with thex−y plane in the transverse direction,

is given by Fresnel diffraction theory [Cow95]:

fp(x, y, z) =
i

λz
exp(ikz)

∫ ∫
S(X, Y, z = 0) exp

(
iπ

λz
[(x − X)2 + (y − Y )2]

)
dXdY

(2.4)
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whereS(X, Y, z = 0) is the field immediately behind the object.

Now, consider the case where the sample is illuminated not bya plane wave but

by a spherical wavefront originating from an ideal point source located at a distancez1

from the planez = 0, as illustrated in Figure 2.6. Illumination by a spherical wave is

sample

z = 0 z = z2

z1 z2

source
point

Figure 2.6: Spherical wave illumination

equivalent to adding an additional phase term to the sample corresponding to curvature

of the incident wavefront, so that:

Scurv(x, y, z = 0) = S(x, y, z = 0) exp[
iπ

λz1
(x2 + y2)] (2.5)

where a parabolic approximation have been made for the spherical wave front incident

on the planez = 0. Note that illumination of the object by a plane wave is equivalent

to makingz1 → ∞, in which that equation reduces to the expression for the wave field

immediately behind the sample.

In the case when a parabolic approximation have been made forthe spherical wave,

the Taylor series expansion for pointsr = (x, y, z) is:

r =
(
x2 + y2 + z2

)1/2

= z
(
1 + θ2

)1/2
= z

(
1 +

θ2

2
− θ4

8
+ . . .

)

≈ z

(
1 +

θ2

2

)
= z +

x2 + y2

2z
(2.6)

Where we useθ2 = x2+y2

z2 ≪ 1, when pointsr are sufficiently close to thez axis but

far away from the source orz1 ≫
√

x2 + y2. The spherical wave eventually resembles

the plane wave ofexp(ikz), whenθ2 ≪ 1 and the termθ4/8 may be very small. The
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approximation is therefore valid when:

kzθ4

8
≪ 1 or

(x2 + y2)2 ≪ z3λ (2.7)

For points(x, y) within a circle of radiusa, centered about thez-axis, the validity

condition is then:

a ≪ 4
√

z3λ (2.8)

This is a sufficient condition for the parabolic wave approximation to be valid.

The wave function in Equation 2.4 at the image planez2 now becomes, apart from

a constant,

fs(x, y, z2) =
i

λz2
exp(ikz2)

∫ ∫
S(X, Y, z = 0) exp

(
iπ

λz1
[X2 + Y 2]

)

exp

(
iπ

λz2

[(x − X)2 + (y − Y )2]

)
dXdY (2.9)

Expanding the arguments in the second exponential inside the integral gives:

fs(x, y, z2) =
i

λz2

exp(ikz2) exp

(
iπ

λz2

[x2 + y2]

)∫ ∫
S(X, Y, z = 0)

exp

(
iπ

λz1
[X2 + Y 2]

)
exp

(
iπ

λz2
[X2 + Y 2]

)
exp

(
−i2π

λz2
[xX + yY ]

)
dXdY (2.10)

Rewriting Equation 2.10, we have:

fs(x, y, z2) =
i

λz2
exp(ikz2) exp

(
iπ

λz2
[x2 + y2]

)∫ ∫
S(X, Y, z = 0)

exp

(
iπ

λ
[X2 + Y 2](

1

z1

+
1

z2

)

)
exp

(
−i2π

λz2

[xX + yY ]

)
dXdY (2.11)

This is the same expression that would result from an incident plane wave with an

effective propagation distancez:

1

z
=

1

z1
+

1

z2
or z =

z1.z2

z1 + z2
or z =

z2

M
(2.12)

Image magnification will also occur because of the geometrical projection. The magni-

fication factorM , is given by:

M =
z1 + z2

z1

(2.13)
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Substituting Equation 2.12 into Equation 2.11 we have:

fs(x, y, z2) =
i

λMz
exp(ikz2) exp

(
iπ

λMz
[x2 + y2]

)∫ ∫
S(X, Y, z = 0)

exp

(
iπ

λz
[X2 + Y 2]

)
exp

(
− i2π

λMz
[xX + yY ]

)
dXdY (2.14)

The point source intensity at distancez2 is therefore identical (up to a constant factor) to

the plane wave illuminated wave field a distancez beyond the object, magnified by the

geometric magnificationM . In the case of a large source-sample distance,z1 → ∞, the

effective propagation distancez, is approximately equal to object detector distancez2

and magnification factor is approximately equal to 1. If we substitute those parameters

to Equation 2.14 we recover the plane wave illumination case.

For the casez2 ≫ z1, the effective propagation distancez is to a good approximation

equal to the point source to object distancez1. Varying the object to detector distancez2

changes only the magnification of the diffraction pattern. This is the case where point

projection microscopy works and the most important case forthe work described in this

thesis.

In summary, in the parabolic approximation, the wave function for a spherical wave

front,fs, can be simply expressed in terms of that produced by plane wave illumination,

fp, [Cow95]:

fs(x, y, z2) ∼ fp(
x

M
,

y

M
,
z2

M
) (2.15)

and in Fourier space transformation:

Fs(u, v, z2) ∼ Fp(Mu, Mv,
z2

M
) (2.16)

where thez dependence is explicitly retained andF is the Fourier transformation of the

wave functionf , using the convention:

F (u) =
1

2π

∫
f(r)e−i(u·r)dr

f(r) =
1

2π

∫
F (u)ei(u·r)du (2.17)

The variablesu, v represent spatial frequencies in the transverse planes where u2 =

u2 + v2.
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Comparison with the stringent condition in Equation 2.8, Turner [Tur04b] derived

a new condition that extends the validity of the isomorphism(Equation 2.15) between

the Fresnel diffraction intensity of an object illuminatedwith plane waves and of same

object illuminated with a spherical wave. In the large magnification limit of z2 ≫ z1,

this condition is well approximated by [Tur04b]:

2a ≪ 4

√
λz2

1z2 (2.18)

This condition is valid even beyond the parabolic approximation due to some significant

cancelation of errors in the higher order term in the expansion of a spherical wave.

Wave propagator

The propagation of the transmitted wave in free space over a propagation distance, is

well described in the Fresnel approximation, using the Kirchhoff formulation by the

convolution of the transmitted wave with a propagator function.

In the Kirchhoff formulation of scalar diffraction theory,a complex function repre-

senting a coherent, scalar, monochromatic optical plane wave field in a vacuum can be

described as [Ban91]:

fp(x, t) = exp[−i(ωt − k · x)] (2.19)

wherek is a wave vector which points in the direction of wave propagation. For a

stationary field, we are concerned only with the spatial partof the equation, which

satisfies the homogeneous Helmholtz equation:

(∇2 + k2) exp[ik · x] = 0 (2.20)

where∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is three dimensional Laplacian, andk2 = k2
x + k2

y + k2
z , so

thatkz = ±
√

k2 − k2
x − k2

y. The spatial part of the wave equation is then:

fp(x) = exp[ik · x]

fp(x, y, z) = exp i[kxx + kyy + kzz]

fp(x, y, z) = exp i[kxx + kyy + z
√

k2 − k2
x − k2

y ] (2.21)

which is valid for a plane wave propagating in the positivez direction because we select

only the positive solution to the square root forkz. If we have a plane wave in the plane
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z = 0 given by:

fp(r , 0) = exp i[kxx + kyy] (2.22)

wherer is in thex − y plane perpendicular to the direction of propagation of the plane

wave, then the plane wave in any other planez > 0 is given by [Bar99]:

fp(r , z) = fp(r , 0)eiz
√

k2−k2
x−k2

y (2.23)

The propagation of a plane wave shows a simple phase change relation with the trans-

mitted beam. The knowledge of the propagation properties ofa plane wave also en-

able us to propagate more complex fields. This is because Fourier proposed that any

well-behaved disturbance may be decomposed into a continuous summation of plane

wave elements of different frequencies, amplitudes and phases [Bar99]. Each of these

elements will propagate according Equation 2.23. Denote the complex field in the

planez = 0 by f(x, y, z = 0) and write its two dimensional Fourier transform as

f̃(kx, ky, z = 0). Then

f̃(kx, ky, z) =
1

2π

∫ ∫
f(x, y, z)ei(kxx+kyy)dxdy (2.24)

The optical disturbance in any planez > 0 is written as:

f̃(kx, ky, z) = eiz
√

k2−k2
x−k2

y f̃(kx, ky, z = 0) (2.25)

The Fourier transform of the diffracted wave field in the plane z > 0 is given by mul-

tiplying the Fourier transform of the wave field in the planez = 0 with the Kirchhoff

propagatoreiz
√

k2−k2
x−k2

y .

Using the Fast Fourier Transform [Pre88] for a discrete dataset that is sampled on

a grid of N x N pixels with a pixel size of∆x, we rewrite Equation 2.25 as:

f(x, y, z) = F
−1 exp

(
i2πz

√
1

λ2
− i2 + j2

N2∆x2

)
Ff(x, y, z = 0) (2.26)

wherei, j are the pixel numbers in thekx andky direction respectively in the range

[-N/2, N/2].

A detailed developed of the numerical implementation of Equation 2.25 can be

found in the PhD thesis of Barty [Bar99]. Some applicable information is shown in

Table 2.1. The Kirchhoff algorithm code as describe above has been used as the basic

algorithm used in the numerical simulation work in this thesis.
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Kirchhoff propagation

Input data: IntensityI(x, y) and phaseφ(x, y) sampled on NxN grid with pixel size

of ∆x

f(x, y, 0) =
√

I(x, y)eiφ(x,y)

Propagator: f(x, y, z) = F−1 exp

(
i2πz

√
1
λ2 − i2+j2

N2∆x2

)
Ff(x, y, z = 0)

i, j are the pixel numbers in the x and y direction respectively inthe

range [-N/2, N/2]

Output data: Intensity:I(x, y, z) = |f(x, y, z)|2

Phase:φ(x, y, z) = arg[f(x, y, z)]

(Output data pixel size is the same as that of the input data)

Table 2.1: Basic method to develop the propagation algorithm. Source [Bar99].

2.2.2 Far field diffraction

In far field diffraction, the overall dimension of the objectis very much smaller than the

distances between the source to the sample and between the sample to the detector. In

this case, the source and the detector are placed at a large distance from the sample. The

wave curvature of the beam is therefore negligible. It givesthe diffraction pattern that

apart from size, is independent of the distance. Figure 2.7 shows the coordinate system

for the description of far field diffraction. Let the coordinate of the object plane be

(X,Y) and the coordinate of the projection plane (x,y). The wave field at the detection

sample 
plane

detector
plane

z

x,yX,Y

α

Figure 2.7: Configuration of far field diffraction.
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plane can be written as [Cow95]:

f(x, y) = C

∫ ∫
S(X, Y ) exp(

ik

z
(xX + yY ))dXdY (2.27)

whereS(X, Y ) is the object transmission function,C is a constant,k is the wave num-

ber. Note that the plane waves incident upon the image plane are at an angleα to that

plane, so that the angleα is related to the location of the object elements in the detector

plane.

For x
z
≪ 1 and y

z
≪ 1 due to the large distance of the detector, the above equation

can be approximated by the two dimensional Fourier transform as:

f(u, v) = C

∫ ∫
S(X, Y ) exp(ik(uX + vY ))dXdY (2.28)

whereu = x
z

andv = y
z

are the angular variables. This equation shows that the far

field diffraction pattern at the image plane can be written asa suitably scaled Fourier

transform of the object transmission function.

2.2.3 Fresnel number in phase imaging

Fresnel number is a dimensionless physical quantity in diffraction theory and is defined

as [Gur03]:

F =
a2

λz
(2.29)

whereλ is the wavelength of a beam passing through an object with characteristic di-

mensiona and hitting a detector at a propagation distancez.

In an imaging system, it is possible to distinguish three different regimes based on

Fresnel number at a given wavelength as a function of propagation distancez [Gas99]:

• The intermediate or Fresnel regime, when the radius of the first Fresnel zone

r =
√

λz, can be compared to the characteristic dimensiona of the sample per-

pendicular to the beam direction, such thatF ≈ 1. The image of the object is

distorted here and varies rapidly with the propagation distance. In this regime the

information of the phase can be accessed by combining the images recorded at

different distances with a suitable algorithm [Clo99a].
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• The ”edge detection” or near Fresnel regimeholds for smallz values, such that

z
λ
≫ F ≫ 1. Under these condition the object covers many Fresnel zones. The

image has a close similarity with the object, and an immediate interpretation is

possible. The image contrast depends linearly on the phase shift introduced by

the object into the transmitted wave. A boundary contrast appears as a result of

interference of strongly scattered rays at the boundary dueto refraction with the

reference rays. Therefore the phase gradient in the object becomes visible even

for a purely transparent object [Clo97a; Arh04]. Most of thework done in this

study is performed this region. Note that many authors incorrectly call this the

near field region: The near field is well defined in optical theory as the region in

which evanescent fields are significant, that is wherez ∼ λ.

• The far field regimeholds for largerz values, such thatF ≪ 1. The image ob-

tained is the far field diffraction pattern, with no resemblance to the sample. This

corresponds precisely to the Fourier image of the object. Inthis region diffrac-

tion and phase dominate the imaging process [Nug03]. If we use the relation for

spherical wave case as in Equation 2.12 for effective propagation distance, we

define the Fraunhofer approximation, such thata2

λ
( 1

z1
+ 1

z2
) ≪ 1. In the limit of

large sample to detector distancez1 → ∞, Fraunhofer approximation approach

to the far field regime.

In this imaging system, a certain distance between the sample and the detector is re-

quired to optimize phase contrast for a certain object size as shown in the examples in

Figure 2.4. In those figures the Fresnel number,a2

λz
, corresponding to the propagation

distances with the feature size ofa = 6µm (which is approximately the size of the

bird’s eye in the input phase of Figure 2.3) and using the x-ray wavelength of1Å, is

equal to 360, 36, 3.6, 0.9 and 0.25 respectively. Therefore in this case, Figures 2.4(a),

(b), and (c) are included in the near Fresnel regime. Figure 2.4(d) and (e) shows an

example of intermediate regime.
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2.2.4 Two beam diffraction

X rays are scattered by certain groups of parallel atomic planes within a crystal. When

x-rays is allowed to impinge on a crystal, those of certain wavelengths will be oriented at

a proper angle to a group of regularly arranged atomic planesso that they will combine

in phase to produce diffraction pattern. In general, it is possible to work with two

different geometries in two beam diffraction: the transmission (Laue) and reflection

(Bragg) geometry, as shown in Figure 2.8. In this figure,ko is the wave vector of the
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Figure 2.8: Geometric representation of x-ray diffractionin (a) transmission (Laue case) and (b)

reflection (Bragg case).

incident wave,kh is the wave vector of respectively transmitted (Laue) and reflected

(Bragg) wave,̂n is the normal to the crystal surface.

As the incident waves propagates down into a crystal its amplitude weakens, since a

small fraction of the energy is reflected at each atomic plane. Furthermore the beam is

reflected in the directionkh, and/or can be re scattered into the direction of the incident

beam,ko. Each set of planes picks out and diffracts the particular wavelength from the

radiation that satisfies the Bragg law [Cow95]:

2dhkl sin θB = nλ (2.30)

wheredhkl is the lattice plane spacing of the crystal,θB is the Bragg angle,λ is the

wavelength andn is the order of reflection. In this way, a crystal can be used asa

monochromator.
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In the simple model just described, the Bragg diffraction occurs only at one pre-

cisely defined angle. In reality, the diffraction is not so well defined and the angular

distribution over which diffraction occurs is described onthe rocking curve. An exam-

ple of a rocking curve of a perfect crystal is shown in Figure 2.9. In this case a perfect
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Figure 2.9: Schematic figure of rocking curve of a crystal.

crystal acts as a spatial filter. The amplitude filtering property is shown by rejecting

waves with spatial frequencies outside the bandwidth frequency of the peak. There is

also a180o phase shift of the wave as it shows through the rocking curve [Dav95].

2.2.5 Partial coherence theory in phase imaging

A portion of the work undertaken in this research deals with the issue of partial coher-

ence of the source. Accordingly, we introduce some of the relevant concept and tools

here. There are two types of coherence [Bor99]:

• Longitudinal or temporal coherence.

A source is never strictly monochromatic. When the source emits over a finite

wavelength bandwidth,∆λ, the wave has limited longitudinal coherence, which

is also called temporal coherence. Each wavelength in the band would produce

a different diffraction pattern. The superposition of these patterns could blur the

diffraction fringes we wish to observe to the point that theyare no longer visible.

We suppose two beams within a bandwidth frequency of∆ν and a path different

∆l = c∆t (c the speed of light in vacuum and∆t the time delay). The inter-
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ference fringes will be formed if:∆ν∆t ≤ 1. Since∆ν ∼ c∆λ/λ̄2, the degree

of coherence of a wave can be expressed by the coherence length, defined as

[Man95]:

∆l ∼ λ2

∆λ
(2.31)

The longitudinal coherence can also be characterized by therelative bandwidth,

∆λ/λ. Therefore, improving the beam monochromaticity enhancesthe temporal

coherence.

• Transverse or spatial coherence.

A source is never truly a point source. An extended source size can be charac-

terized by its lateral coherence, also known as spatial coherence. Typically for

x-ray sources each portion of the extended source produces awave that reaches

the sample with a different phase and produces a different diffraction pattern. The

superposition of such patterns could wash out the diffraction fringes that we wish

to observe.

We assume an extended source with a size∆σ is placed at a distancez1 from the

pinholesT1 andT2 that forms an angle∆θ from the source, as shown in Figure

2.10. Interference fringes will be observed if:∆θ∆σ ≤ λ̄. Since∆θ ∼ ∆l⊥/z1,

observation plane

∆
∆ θ
2

1

2

z1

T

T

σ

Figure 2.10: Illustration to describe spatial coherence property (Young’s interference experi-

ment).

the lateral coherence length can be expressed as [Man95]:

∆l⊥ = λz1/∆σ (2.32)
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So, to enhance the spatial coherence, we must decrease the source size or increase

the distance from the source to the sample.

However, now we consider a system that approaches the realistic experimental ge-

ometry of a micro focus x-ray laboratory source. Here we use the van Cittert-Zernike

theorem [Bor99]. Figure 2.11 illustrates the propagation of a partially coherent radia-

tion field originated from extended source and is observed bytwo points,P1 andP2,

located on the observation plane with the position vectorsr 1 andr 2 perpendicular to the

optic axisz. We assume that the extended source is in a plane parallel to the observation
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Figure 2.11: Irradiance of an extended source.

plane and can be divided into cells of statistically independent radiators. Thus, the total

field at any point on the observation plane is given by summingthe fields due to each

of the cells as:

E(r , t) =
∑

n

En(r , t) (2.33)

A term knownmutual coherence functionis a basic for the theory of partial coher-

ence. It represents the correlation function of the wave field between pointP1 andP2,

which is described as [Bor99]:

Γ(r 1, r 2, τ) = 〈E(r 1, t)E
∗(r 2, t + τ)〉 (2.34)

whereτ is the time difference. The complex degree of coherence is defined as the

normalized mutual coherence function as:

γ(r 1, r 2, τ) =
Γ(r 1, r 2, τ)√
I(r 1)

√
I(r 2)

(2.35)



28 CHAPTER 2. X-RAY IMAGING

It represents the autocorrelation of the source disturbance. We point out thatγ(r 1, r 2, τ)

= 1 indicates for fully coherent field and0 ≤ γ(r 1, r 2, τ) ≤ 1 for partial coherence

field. For a quasi monochromatic radiation, we may then approximate the correlation

functions by the expression:

Γ(r 1, r 2, τ) ∼= J(r 1, r 2)e
−iωτ (2.36)

γ(r 1, r 2, τ) ∼= j(r 1, r 2)e
−iωτ (2.37)

Whenτ ≈ 0 3, we define an equal time correlation functions as:

J(r 1, r 2) ≡ Γ(r 1, r 2, 0) (2.38)

j(r 1, r 2) ≡ γ(r 1, r 2, 0) =
J(r 1, r 2)√

I(r 1)
√

I(r 2)
(2.39)

The mutual optical intensity,J(r 1, r 2), is then rewritten as [Man95]:

J(r 1, r 2) ≡ 〈E(r 1, t)E
∗(r 2, t)〉

=
∑

n

〈En(r 1, t)E
∗
n(r 2, t)〉 (2.40)

The source with radiating surfaceσ consists of many point source elements with every

elements of the source are mutually uncorrelated. Every single point produces coherent

illumination so that each point emits a spherical wave. It leads to an expression for the

mutual intensity as [Man95]:

J(r 1, r 2) =

(
k̄

2π

)2 ∫

σ

I(r ′)
eik̄(zP1−zP2)

zP1zP2
d2r ′ (2.41)

whereI(r ′) is a measure of intensity atr ′ in the source.

Substituting this equation to the equal time complex degreeof coherence of Equa-

tion 2.39, we have:

j(r 1, r 2) =
1√

I(r 1)
√

I(r 2)

(
k̄

2π

)2 ∫

σ

I(r ′)
eik̄(zP1−zP2)

zP1zP2

d2r ′ (2.42)

where

I(r 1) = J(r 1, r 1) =

(
k̄

2π

)2 ∫

σ

I(r ′)
z2

P1

d2r ′

I(r 2) = J(r 2, r 2) =

(
k̄

2π

)2 ∫

σ

I(r ′)
z2

P2

d2r ′ (2.43)

3due to the assumption of small distance between pointsP1 andP2 in the observation plane, so that
z ≈ zP1 ≈ zP2
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We refer Equation 2.42 as the van Citter-Zernike theorem which describes the correla-

tion of the field atP2 andP1. It says that the equal-time degree of coherencej(r 1, r 2) is

equal to the normalized complex amplitude of a certain diffraction pattern centered on

a pointP2 at the corresponding pointP1 [Bor99].

For most problems of interest, we may take:

zPn =
√

R2 + (xn − ξ)2 + (yn − η)2 ≈ R +
(xn − ξ)2 + (yn − η)2

2R
(2.44)

whereR is the distanceOO′. We may approximate Equation 2.42 as [Bor99]:

j(r 1, r 2) =

∫ ∫
σ
I(ξ, η) exp(ik̄ (x1−ξ)2−(x2−ξ)2+(y1−η)2−(y2−η)2

2R
)dξdη∫ ∫

σ
I(ξ, η)dξdη

(2.45)

We refer this equation as the far zone form of the van Cittert-Zernike theorem. In the far

zone of the source, the equal-time degree of coherencej(r 1, r 2) is expressible in terms

of the Fourier transform of the intensity.

We now consider a mutual optical intensityJ(r + x
2
, r − x

2
) described by Nugent

[Nug91] incident on an aperture with complex amplitude transmissionA(r) at z = 0

with r = (r 1 + r 2)/2 andx = r 1 − r 2 as :

J(r 1, r 2) = Ψ(r 1)Ψ
∗(r 2)g(r1 − r 2) (2.46)

whereΨ(r) is the wave amplitude distribution,g(r1 − r 2) the coherence factor. The

conditiong(r 1 − r 2) = 1 will be the fully coherent limit. Under the Fresnel approxi-

mation, the intensity distribution in a plane a distancez from the aperture is written as

[Nug91]:

I(r , z) =
1

λ2z2

∫
g(x)K(x)e(−i2πr .x/λz)dx (2.47)

whereK(x) is the autocorrelation ofΨ(r)A(r) exp(iπr2/λz) 4, which is simply the

coherent Fresnel diffraction pattern of the fieldΨ. The above equation for intensity

distribution can be written with the convolution theorem as:

I(r , z) = g(x/z) ∗ K(x, z) (2.48)

4The autocorrelation function is given by:

K(r) =

∫
T (r ′)T ∗(r ′ − r)dr ′.

In that case we haveT (r) = Ψ(r)A(r ) exp(iπr2/λz).
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where * denotes convolution. The equation shows that the observed intensity distribu-

tion of a partial coherent diffraction pattern,I(r , z), is the convolution of the intensity

of the fully coherent Fresnel diffraction pattern,K(x, z), with the shape of the scaled

incoherent primary source,g(x). In this case, the coherent diffraction pattern will be

blurred by the convolution of the scaled source distribution.

This analytic description of partially coherent source allows us to explore the effect

of varying the source size on the measured intensity and we will use it in later chapters.

2.3 Phase visualization for x-rays

As discussed, the propagation of x-rays through an object introduces shifts in the phase

of the wave field. This phase shift can be visualized as a distorted wavefront which

can be detected using various phase contrast techniques. Several modes of x-ray phase

contrast imaging have been implemented over the years. Diffraction enhanced imaging

and free space propagation phase contrast are discussed in the next subsection. Recently

several groups have shown other phase contrast imaging techniques. Zernike phase

contrast shows a linear dependence with the phase distribution [Zer42]. This been done

by using annular phase plates in the back focal plane of an objective lens or a zone plate

[Sch94]. Schlieren phase contrast has a similar setup to theZernike phase contrast, with

the only difference instead of phase plate at the back focal plane it uses a knife edge to

block out half of the Fourier spectrum of the wave [Zak04].

Each different technique has its advantages and its drawbacks with respect to the

accessible phase information, the complexity of the set-up, the requirements on the

beam and resolution. Therefore, each technique has its own area of applicability.

2.3.1 Diffraction enhanced imaging

Diffraction-enhanced imaging is a differential method that relies on the phase differ-

ence across the wave front [Gao95]. The phase gradient can beresolved with a crystal

analyzer that is placed between the sample and the detector,see Figure 2.12. The final

result depends on which case of diffraction (Laue or Bragg) is used for the analyzer and
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on the type of the beam (transmitted or reflected). The angular acceptance of the ana-

lyzer is described by its rocking curve. This is obtained by rocking the crystal through

a specific reflection with no sample in the beam. The angular deviation introduced by

a sample changes the incidence angle to the analyzer. To obtain a better contrast the

monochromator

sample crystal
analyser

detector

source
x−ray

Figure 2.12: Diffraction enhanced x-ray imaging

working point of the reflection curve must be set to the point where the slope of rocking

curve has maximum value. In this case, contrast is expected where phase gradients,

∇φ, are present. The resulting image will have enhancement contrast due to the scatter-

rejection property of the analyzer, compared to an image when the angular setting of the

analyzer was out of the Bragg position (absorption images).By changing the angle of

the analyzer crystal around the Bragg position, different planar sections of the distorted

wavefront can be imaged, leading to a series of images with differing contrast [Dav95].

The setup shown is simplified but in general the information that can be extracted is

limited and rather qualitative. This is because the crystalanalyzer does not reveal the

local phase shift but instead reveals the local phase gradient. However, many groups

show maps of the phase gradients [Ing95; Dav95; Gao95] and techniques do exist to

produce reconstructed phase maps based on such measurement[Pag04b].

This technique is very useful in medical and biological studies particularly for de-

tection of different kinds of biological tissues [Dav95], and a breast tissue sample from

humans in phase mammography [Ing98]. In other work, Ingal and Baliaevskaya [Ing95]

used the Laue case of diffraction in a crystal analyzer. Thisallows them to register si-

multaneously two kinds of detection: in the transmitted beam by using a CCD camera

and in the reflected beam by using a scintillation counter. This allows the simultaneous
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observation of the angular position in the rocking curve andthe corresponding image

contrast. One outstanding result of this method is an image of an aquarium fish [Ing95].

2.3.2 Free space propagation phase contrast

Free space propagation phase contrast imaging relies on Fresnel diffraction in free space

of the wave field exiting the sample. It simply allows the wavefield to propagate a

sufficient distance away from the sample so that diffractionfringes can be observed.

It is a unique contrast mechanism in comparison with other phase sensitive imaging

techniques in that it has the advantage of a very simple experimental set-up requiring no

optical element. The absence of optical elements implies that the method is intrinsically

free from the usual aberrations. The free space propagationmethod allows refraction

effects to be visualized and provides information about thedistribution of the real part

of complex refractive index in the sample.

�
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detector

z

sample

x−rays
source

Figure 2.13: Free space propagation phase contrast imaging

In this technique, the x-rays emerging from the sample will propagate through space

until they reach the detector, see Figure 2.13. The inhomogeneous phase shift produced

by the sample refract the x-rays. After some propagation distance, the density of rays

becomes inhomogeneous leading to observable changes in theintensity distribution.

This simple scheme of free space propagation phase contrastis routinely realized

today on third generation synchrotron radiation sources. Snigirev [Sni95] first explored

this technique for micro imaging of organic samples (fibers)using the ESRF source.

However, this technique has also generated a considerable amount of interest in the

development of more conventional laboratory-based x-ray tube sources which do not

demand large distances in the experimental setup. Wilkins et al [Wil96; Gao98] de-
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veloped this technique using a micro or nano focus laboratory x-ray source to get

phase contrast images using spherical wave illumination ofthe object. McMahon et

al [McM01] and Allman et al [All00] demonstrated in line phase visualization using

neutron sources for crack detection in metal samples. Theirpropagated images of a

metal sinker and a damaged aeroplane engine turbine blade show an increase in con-

trast. Toth and Kieffer [Tot05] showed phase contrast imaging of this technique using

an ultrafast laser-based hard x-ray source. Projection x-ray radiography of this form

was also discussed by Pogany [Pog97] using a contrast transfer function (CTF) formal-

ism. The methods described there give insight into the nature of the image formation

under the Fresnel approximation. Cloetens et al [Clo97a] used this technique to im-

age a cracked silicon single crystal and metal matrix composite, both in projection

and in computed tomography. Using electron microscopy methods, quantitative x-ray

phase imaging has been developed [Baj00; May02], for high-brightness sources. The

free space propagation technique has also been applied to a very broad range of areas

[Clo96; All00; Gur01; Tot05]. It is this range of use that makes it an attractive basis for

development in a study of x-ray diffraction phase contrast,as we will show in the rest

of this thesis.

2.4 Phase measurement

Phase measurement is to determine quantitative information of the phase of an object. It

can be done directly with interferometry and indirectly with phase retrieval algorithms.

2.4.1 X-ray interferometry

Interferometry is a quantitative phase measurement technique. This contrast is due to

the interference of the beam transmitted through the samplewith a reference beam often

derived from the same source. The resulting interference fringes can be used to deduce

the relative phases of the two waves. There are many different types of interferometry

[Bor99], but all of them follow the same basic principle as shown in Figure 2.14. In this

case any phase differences in the optical path for the beam transmitted through a sam-
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ple are directly encoded using a monochromatic beam. The first optical element after

the monochromator splits the incident beam into two. In a symmetrical experimental

scheme the intensity of both beams are equal to each other. Beam splitting can be done

monochromator

splitter

mirror

sample

analyser

detector
x−ray
source

Figure 2.14: An x-ray interferometer phase imaging

in two ways: wavefront splitting and amplitude splitting [Hec97]. Young’s double slits,

Fresnel’s bimirrors and prisms are example of x-ray wavefront splitters [Hec97]. Am-

plitude splitting is superior in some applications becausein amplitude splitting case,

high spatial coherence is not as essential as in the case of wavefront splitting [Mom03].

Crystals are used for amplitude splitting in the hard x-ray region and free standing mul-

tilayers or gratings are used for amplitude splitting in thesoft x-ray region. The second

element (often a mirror) in Figure 2.14 deviates the beam, sothey can be recombined at

the third element (such as a crystal analyzer). This is placed at the region of intersection

of the two beams. A sample placed in the path of one of the beamsbetween the mirror

and analyzer, will introduce a phase shift and distort its wavefront inhomogeneously.

The interference fringes are then recorded using a detectorin the path of the outgoing

beam.

The construction of x-ray interferometers is, in general, more complex than the

construction of optical interferometers. X-ray wavelengths are three order of magnitude

shorter than visible light and consequently an x-ray interferometer requires much tighter

alignment and greater mechanical stability than for visible light interferometers. When

the optical path difference fluctuates by more than a wavelength, the corresponding

fringe pattern can be significantly changed. If the time required to record the fringes

is longer than the time constant of fluctuations in the system, fringe contrast is lost

[Mom03].
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Intrinsically, the resolution of the system for x-rays is limited by the passage of the

beam through optical elements. The beam energy of each pointat its entrance of the

crystal spreads out at its exit whose width will limit the resolution. The visibility of

interference fringes is further limited by detector resolution.

X-ray interferometry was first demonstrated by Bonse and Hart [Bon65] and Ando

et al [And72] first recorded x-ray phase images using a configuration as shown in Fig-

ure 2.14 for imaging of bone tissues and of a slice of granite.Momose et al [Bon00;

Mom95; Mom03] developed this direct phase shift measurement technique into com-

puted tomography. Each measurement allows one to obtain themap of the phase shift

which is proportional to an integral over the path of x-ray beam on the decrement of the

real part of the refractive index. So this map may be considered as a projection of the

real part of the refractive index of the object along the pathof x-ray beam. In computed

tomography, one can obtain a set of such projections by rotating the object. Then the

standard technique of computed tomography allows the reconstruction the distribution

of the electron density, which is related to the real part of the refractive index inside the

object.

There are several applications of x-ray interferometry including measurements of

optical constants [Bon65], measurements of strains [Fod03] and lattice distortions in

crystals [Abo00], and measurements of dispersion surfaces[Bon65]. The technique

is generally limited by difficulties in ensuring the coherence of the x-rays, the coher-

ent division of the x-ray beam, the stability of the optical path length and the limited

availability of high quality optics. However, many of theseapplications are still pur-

sued, and are now being applied at synchrotron radiation sources around the world

[Mom95; Mom03].

2.4.2 Phase retrieval

There are several approaches that are currently used to solve the phase retrieval problem

based on propagation induced contrast in the measured intensity. The method chosen

often depends on the imaging regime in which the data has beenacquired. In the near

Fresnel region, Teague [Tea83] first derived a phase retrieval solution based on the so
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called Transport of Intensity equation (TIE) with his Green’s function solution. Further,

a TIE based algorithm [Gur95; Nug96; Pag98] and single planeTIE based algorithm

[Pag02] are used to retrieve the object phase in the small propagation limit.

A single plane contrast transfer function (CTF) based algorithm [Tur04a; Gur04;

Clo99a; Zab05] can be used for larger propagation distancesunder condition of weakly

absorbing object and slowly varying phase, as shown in Equation 2.69. A similar phase

retrieval algorithm has been developed by Wu [Wu05] that canbe used for x-ray energy

range of 60-150 keV. This algorithm is also suitable for large propagation distances.

However, Gerchberg-Saxton [Ger72] type iterative methodsare often used for more

general cases including for far-field images. This algorithm is essentially an intelligent

guess and check routine which searches through the space of possible solutions with

the aim of converging on an acceptable solution. This methodwas modified by Fienup

[Fie82] to create the hybrid input-output algorithm. Nugent [Nug03] also developed

a phase retrieval type iterative algorithm for far field images, the so called astigmatic

diffraction technique, which allows a solution without anydetailed knowledge of the

object shape. It allows the phase to be recovered uniquely and reliably from a mea-

surement of the far field diffraction pattern combined with far-field diffraction patterns

obtained with orthogonal cylindrically curved waves.

The choice for using phase retrieval algorithms depends upon the range of the prop-

agation distances, the x-ray energy in the experiment and the properties of the sample.

The non iterative algorithms [Nug96; Pag02; Tur04a; Wu05] are alternative approaches

that find a deterministic solution, which has a direct mapping between the input data and

retrieved phase. These solutions exist only under certain assumptions about the field to

be measured. For example, if one is restricted to non rotational, weakly diverging fields

with no intensity zeroes over some simply connected region of space, then it is possible

to determine uniquely the phase using TIE methods. Time efficiency and resistance to

noise perturbations tend to be the advantage of using a non iterative type solution.

Hereunder we discuss some of the phase retrieval algorithmsin more detail, includ-

ing: TIE based phase retrieval, single plane TIE based phaseretrieval and the CTF based

phase retrieval algorithms. We will not discussed far field methods as the work under-
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taken here concentrates purely on the classical imaging regime of near and intermediate

fields as described earlier.

TIE based phase retrieval algorithm

In this subsection, we derive the transport of intensity equation first and then discuss the

TIE based phase retrieval algorithms. We will use the transport of intensity equation as

a starting point for a phase retrieval technique and for the propagation equation in the

model developed in Chapters 4 and 5. We consider that the beampropagates in the

z direction andr = (x, y) is a two dimensional vector in the direction transverse to

propagation direction. The transport of intensity equation can be obtained from the

paraxial scalar wave equation [Tea83]:

(i
∂

∂z
+

∇2

2k
+ k)fz(r ) = 0 (2.49)

where∇2 = ( ∂2

∂x2 + ∂2

∂y2 ) andk = 2π/λ. Intensity is defined as:

I(r) = f ∗(r)f(r) (2.50)

The wave functionfz(r) at a transverse plane atz, can be written explicitly in terms of

its intensityI and the phaseφ:

fz(r) =
√

Iz(r)exp[iφz(r)] (2.51)

Expand the first term of Equation 2.49 and, neglecting the arguments for simplicity,

after substitution of equation 2.51 we have [Pag99]:

i
∂f

∂z
= ieiφ ∂

√
I

∂z
−

√
Ieiφ ∂φ

∂z
(2.52)

Expanding the second term of Equation 2.49 [Pag99]:

1

2k
∇2f =

1

2k
eiφ∇2

√
I + i

1

k
eiφ∇

√
I · ∇φ + i

1

2k

√
Ieiφ∇2φ− 1

2k

√
Ieiφ(∇φ)2 (2.53)

And the third term of Equation 2.49:

kf = k
√

Ieiφ (2.54)
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Both the real and imaginary parts of the left hand side of Equation 2.49 must be equal

to zero. If we add Equations 2.52, 2.53 and 2.54, and take the imaginary part of them,

we obtain:
∂I

∂z
+

1

k
∇ · (I∇φ) = 0, (2.55)

where we have used the identity∇ · (I∇φ) = ∇I · ∇φ + I∇2φ and∇
√

I = 1
2
√

I
∇I.

Equation 2.55 is known as thetransport of intensity equation. It describes the relation-

ship between the phase and intensity of a wave field over a plane to the rate of change

of the measured intensities.

The real part of the summation of Equations 2.52, 2.53 and 2.54 leads to:

−2k
√

I
∂φ

∂z
+ ∇2

√
I +

√
I(2k2− | ∇φ |2) = 0 (2.56)

This is known as the eikonal equation [Bor99]. The eikonal isthe function that defines

surfaces of constant phase in the wave field - that is the wavefronts.

In Equation 2.55, the intensity derivative along the propagation directionz is de-

fined in terms of the intensity. The TIE describes how the intensity distribution of an

electromagnetic field changes as it propagates through space. So, by measuring the in-

tensity and analyzing how its distribution has changed withpropagation, the phase of

the field can in principle be deduced.

Methods for the solution of the TIE has in fact been developed, including an algo-

rithm developed by Gureyev and Nugent [Gur95] and a later algorithm developed by

Paganin and Nugent [Pag98]. The first algorithm inverts the TIE as a weighted sum

over a series of orthogonal polynomials. A series expansionis applied to the intensity

derivative and the phase. Then matrix inversion is used to recover the phase. This algo-

rithm becomes computationally intensive in the presence ofnon uniform intensities, as

will often be the case in practice. Therefore, it is impractical for general application to

phase retrieval in the presence of object that have a non-uniform absorption distribution.

The second algorithm makes use of the rapid processing capability of the numerical

Fast Fourier Transform [Pag99] to determine the phase whereintensity variations in

the field are present. This algorithm is discussed below since the results will be used

throughout this thesis.
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In order to solve equation 2.55, Paganin obtains the solution for the phase by using

double Fourier transformation as [Pag99]5:

φ = φx + φy,





φx = F−1u−2

r uxF I−1F−1uxu
−2
r F (k ∂I

∂z
)

φy = F−1u−2
r uyF I−1F−1uyu

−2
r F (k ∂I

∂z
)

(2.57)

where (φx, φy) are the solution for the components of the gradient operator in the equa-

tion for x andy direction respectively,F denotes Fourier transformation,F−1 denotes

inverse Fourier transformation,(ux, uy) are the Fourier variables conjugate to (x,y) and

u2
r = u2

x +u2
y. It is understood that division byu2

r does not take place at the point where

ur = 0 in Fourier space6. Alternatively, the division byu2
r can be regularized (e.g.

Tikhonov7) [Tik63]. This algorithm is efficient computationally and is able to take into

account the intensity variations in the field.

Equation 2.57 is implemented by measuring two different intensities a small dis-

tance apart in order to measure the derivative. We require the distance to be small so

that:

I(r , z) ≈ I(r , 0) + z
∂I(r )
∂z

(2.58)

Under this condition the intensity varies approximately linearly with propagating dis-

tance. The validity condition for the TIE solution is therefore when the higher order

Taylor expansion terms is disregarded and Turner [Tur04b] simplify it as:

λzu2 ≪ 1 (2.59)

whereu is the corresponding spatial frequency of the object. If thedistance between

measurement planes is too small, noise will be strongly amplified in the calculation of

the z-derivative of intensity. With a too large distance apart it will give a poor estimate

5This algorithm is covered by an Australian Provisional Patent.
6Instead we multiply by zero at the pointkr = 0. This is equivalent to taking the Cauchy principal

value of the integral operator∇−2 [Pag99].
7Tikhonov’s regularization is used to handle the division byzero by substituting:

1

ur

→ ur

u2
r + α2

The regularization parameterα is inversely proportional to the signal-to-noise ratio. Itmeans that without
regularizationα is 0. The regularization parameter can be increased for noisy data until the desired level
of noise reduces.



40 CHAPTER 2. X-RAY IMAGING

of the derivative of intensity. The intensity data combinedwith the intensity derivative

data allows us to retrieve the phase distribution independently.

object

two closely spaced
measured intensity

dz

Figure 2.15: Configuration for applying TIE based phase retrieval algorithm. The measured

intensities have a distance dz apart.

This algorithm is less restrictive than the single plane TIEbased phase retrieval, dis-

cussed in the next subsection because the small propagationdistance condition (Equa-

tion 2.59) is required between the two measurement planes, as shown in Figure 2.15,

not to the distance between the sample and the two measurement planes. The per-

formance of this algorithm has been successfully tested andshows excellent results.

Using this technique, Nugent et al. [Nug96] have recovered the phase distribution of x-

rays quantitatively. It was the first experimental demonstration of a non interferometric

quantitative phase imaging technique using x-rays. The obtained phase shift on a model

object carbon calibration grid that was in good agreement with an independent determi-

nation from the absorption. Later work of Paganin and Nugent[Pag98] extended this

method to partially coherent light. A range of other radiation types were also be used to

apply this algorithm, such as electrons [Pag01], neutrons [McM03c; All00] and visible

light [Bar98].

Single plane TIE based phase retrieval algorithm

Paganin et al. [Pag02] have developed a single image non iterative phase retrieval algo-

rithm applicable to near Fresnel images of homogeneous samples of known composi-

tion. This algorithm uses the TIE as its basis.

For a homogeneous sample the variation of phase and intensity in the object plane

can be expressed in terms of the variations of projected thickness of the sampleT (r) in
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the plane perpendicular to the propagation direction:

I(r , 0) = Ioe
−µoT (r) = Ioe

−2kβT (r)

φ(r , 0) = −kδT (r) (2.60)

whereµo = 2kβ is the linear attenuation coefficient,β is the imaginary part of the

refractive index,k is the wave number andIo is the uniform intensity of the incident

radiation. Projected thicknessT (r) is defined as the spatial distribution map of the

object in the transverse direction.

For a near Fresnel image we can approximate∂I(r )/∂z in the TIE by the finite

difference between the object and image plane, usingI(r , z) ≈ I(r , 0) + z ∂I(r)
∂z

. By

using this assumption and together with the expression for asingle image intensity

Paganin [Pag02] obtains the projection sample thickness as:

T (r) = − 1

µo
ln

[
F

−1

(
µo

zδu2 + µo
F

[
I(r , z)

Io

])]
(2.61)

whereu is the Fourier conjugate ofr . The intensity and phase of the object can then be

obtained according Equation 2.60.

object
single measured intensity

dz

Figure 2.16: Configuration for applying single plane TIE based phase retrieval algorithm. The

measured intensities have a distance dz from the object.

This single plane TIE based algorithm is restricted in that it is only valid in the near

Fresnel region. Because the small propagation distance condition of Equation 2.59 has

to be fulfilled for the distance between the sample and the measurement plane, as shown

in Figure 2.16. However, the performance of this algorithm has been tested successfully

[Pag02; May02; Gur04] in the near Fresnel region within its validity condition of small

propagation distance. In [Tur04a], the validity conditionfor TIE was intentionally vi-
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olated and it can be seen that the phase variations were inverted. As expected, the TIE

retrieved thickness grossly underestimates the known correct values.

CTF based phase retrieval algorithm

Another treatment of x-ray image formation is given by Fresnel diffraction theory. In

the case of a ”weak” object, this expression can be formulated to give the so-called

Contrast Transfer Function (CTF). Firstly, in this subsection we derive the CTF theory

and then discuss the CTF based phase retrieval algorithms. We use, a monochromatic

coherent plane wave source, transmitted through a sample described by the wave field

at the exit surface of the sample asS(r) = S0 exp[iφ(r )− 1
2
µ(r)], whereφ(r) the phase

shift andµ(r) the attenuation variation. In the small angle approximation, the wave

function on planesz > 0 is given by the Fresnel diffraction integral, in Equation 2.4.

The Fourier Transform of this wave function is then [Pog97]:

Fz(u) = eikzS̃(u)e−iπλzu2

(2.62)

whereS̃(u) is the Fourier Transform of the wave field at the exit surface of the sample,

S(r). Then the Born type approximation ofφ(r) ≪ 1 andµ(r) ≪ 1 is made so that:

S(r) = S0[1 + iφ(r) − 1

2
µ(r)] (2.63)

and consequently:

S̃(u) = S0[δ(u) + iφ̃(u) − 1

2
µ̃(u)] (2.64)

in which δ(u) denotes the Dirac delta function,µ̃(u) is the Fourier Transform ofµ(r)

andφ̃(u) is the Fourier Transform ofφ(r). Substitute this into Equation 2.62, to get:

Fz(u) = S0

[
δ(u) + iφ̃(u) − 1

2
µ̃(u)

] [
cos(πλzu2) − i sin(πλzu2)

]

= S0

[
δ(u) − 1

2
µ̃ (u) cos(πλzu2) + φ̃(u) sin(πλzu2)

+i{−δ(u) + φ̃(u) cos(πλzu2) +
1

2
µ̃(u) sin(πλzu2)}

]
(2.65)

The measured intensity at a distancez is proportional to the square modulus of the

complex amplitude,Iz(r ) = |fz(r)|2. So, the Fourier Transform of the intensity [Pog97]
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is:

Ĩz(u) = I0


δ(u) − µ̃(u) cos(πλzu2)︸ ︷︷ ︸

abs.term

+ 2φ̃(u) sin(πλzu2)︸ ︷︷ ︸
phaseterm


 (2.66)

This alternatively Born-type approximation for intensitywill be referred further in this

thesis as Contrast Transfer Function formalism. The termcos(πλzu2) andsin(πλzu2)

can be conveniently plotted against the variable
√

λzu, as shown in Figure 2.17.

Figure 2.17: Absorption component,cos(πλzu2) and phase component,sin(πλzu2), of Con-

trast Transfer Function.

Various approximations have been identified which result inthe same expression for

the Fourier transform of the intensity,Ĩz(u). These are the ”weak object” or Born-type

approximation that we have shown above:

µ(r) ≪ 1, φ(r) ≪ 1 (2.67)

the pure phase and slowly varying phase approximation of Guigay [Gui77]:

µ(r) = 0, |φ(r + λzu/2) − φ(r − λzu/2)| ≪ 1 (2.68)

and the extension to weakly absorbing objects demonstratedby Turner [Tur04a]:

µ(r) ≪ 1, |φ(r + λzu/2) − φ(r − λzu/2)| ≪ 1 (2.69)

Many different approaches have been made for phase retrieval based on CTF method.

Turner [Tur04b] developed the solution of Equation 2.66 forthe projected thickness
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T (r) for homogeneous objects, as:

T (r) = F
−1

[
1

−2k[δ sin(πλzu2) + 2β cos(πλzu2)]
F

(
I(r , z)

Io

− 1

)]
(2.70)

Its relation with absorptionµ(r) and phaseφ(r) components are shown in Equation

2.60. In this algorithm, we need only a single diffracted intensity, I(r , z). Turner

argued that this algorithm is fast and remains numerically stable. The validity condition

of this solution is the weakly absorbing object and slowly varying phase condition as

in Equation 2.69 This CTF expression represents an extension of the validity range of

the propagation distance of the TIE algorithm. However, thevalidity condition for the

CTF algorithm is more restrictive in terms of the object phase variation and maximum

absorption.

Figure 2.18: Inverse CTFs for weak absorption limit and slowly varying phase condition, is

shown for TIE solution (dot line) and CTF solution (solid line). Source: [Tur04b].

Unfortunately, this CTF method shows some zeros for certainvalues ofu
√

λz. A

conventional Tikhonov’s regularization [Tik63] can be used to handle these singulari-

ties. The regularization stabilizes the retrieval at zeros, nevertheless the retrieval will

be less accurate for spatial frequencies in narrow regions around the zeros. Conversely,

the limited propagation requirement for the TIE method means that it should only be

applied in the region before the first zero, as shown in Figure2.18. The figure shows

that the TIE solution has agreement with CTF solution for a small region ofu
√

λz and it
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begins to diverge at spatial frequencies just below the firstcontrast peak. Both solutions

have low-frequency stability as a result, but at high frequencies TIE retrieval strongly

suppresses information. In this case, Turner [Tur04b] argued that for TIE solution, the

propagation distance,z, must be small enough that all structure of interest in the object

has spatial frequencies,u, satisfyingλzu2 ≪ 1. The performance of this single plane

CTF based algorithm has been tested successfully through experiment [Tur04a] within

its validity condition.

Based on the CTF method, Zabler and Cloetens [Clo99a; Zab05]used through focal

series of images to develop a ’holographic’ reconstructionby combining phase retrieval

procedure for a set of intensity images at different sample to detector distances. This

method is valid for large propagation distances. The retrieved phase is obtained by

performing a least square minimization of the difference between the measured intensity

and the result of the intensity approximation which is calculated from Equation 2.66.

Then, a minimum value is calculated. As a result, the retrieved phase for pure phase

sample is calculated based on:

φ̃(u) =

∑
m Ĩ

(exp)
zm sin(πλzmu2)∑

m 2 sin2(πλzmu2)
(2.71)

where the summation overm = 1...N needs to be applied whenN images of measured

intensities,I(exp)
zm , have been taken atN propagation distancesz = z1...zN . By including

a weak absorption the retrieved phase and absorption becomes:

φ̃(u) =
1

2∆

(
C ·
∑

m

Ĩ(exp)
zm

sin(πλzmu2) − A ·
∑

m

Ĩ(exp)
zm

cos(πλzmu2)

)

µ̃(u) =
1

∆

(
A ·

∑

m

Ĩ(exp)
zm

sin(πλzmu2) − B ·
∑

m

Ĩ(exp)
zm

cos(πλzmu2)

)
(2.72)

with following coefficients:

A =
∑

m

sin(πλzmu2) cos(πλzmu2)

B =
∑

m

sin2(πλzmu2)

C =
∑

m

cos2(πλzmu2)

∆ = BC − A
2 (2.73)
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Note that this method also avoids the zero problem by filling them with information

from the other planes. This process results in a quantitative phase map. They concluded

that the quality of phase retrieval resulted from this algorithm seems sufficient by us-

ing four propagation distances [Zab05]. Through association with three dimensional

reconstruction techniques (holotomography) Cloetens [Clo99a] then reconstructed the

complete three dimensional mapping of the density in the sample. In field emission of

transmission electron microscopy, the same idea of phase retrieval through focus varia-

tion has been used by Coene [Coe92] to retrieve phase of high-Tc superconductors and

ferroelectric oxides.

A composite method for phase retrieval is developed by Gureyev [Gur03] which is

also valid for large propagation distances. In this case, a TIE retrieved phase is used

as the initial guess for a Gerchberg-Saxton-Fienup iteration. The method is applied for

a pure phase object and it needs only a single image. This method indeed accelerates

convergence of the iterative process.

In other work, Gureyev [Gur04] developed a combination TIE-CTF based method

for phase retrieval for large propagation distances and this can be applied for a single

image of small absorption objects. This method extends the validity range of the lin-

earizations while preserving the deterministic nature andnumerical efficiency of phase

retrieval. In this method, the TIE is used to recover accurately the low-frequency com-

ponents of the phase. Then, the predominantly high frequency components which are

often small in magnitude are recovered iteratively by the CTF method. The performance

of this combination TIE-CTF based algorithm has been testedsuccessfully through sim-

ulation [Gur04].

Wu [Wu05] derived a different phase retrieval formula basedon a single plane non

iterative algorithm. For a sample away from its absorption edge, with an x-ray ampli-

tude,A(r), and phase,φ(r), can be written as a function of projected electron density,

ρe,p(r), as:

A(r) ≈ exp
[
−σKN

2
ρe,p(r)

]

φ(r) = −λreρe,p(r) (2.74)

wherere is the classic electron radius andσKN is the total cross section for x-ray photon
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Compton scattering from a single free electron derived fromthe Klein-Nishina formula.

For soft tissues this formula is valid in the photon energy ranging from about 60 keV

to 150 keV. Starting from the Fresnel-Kirchhoff diffraction theory and the phase-space

evolution of the Wigner distribution for x-ray wave fields, the projected electron density

can be calculated using [Wu05]:

ρe,p(r) = − 1

σKN
loge

(
F

−1

[
F [M2I(Mr ; z1 + z2)]

Iin[1 + 2π( λ2rez2

MσKN
)u2]

])
(2.75)

whereI(Mr ; z1 + z2) is the image intensity,Iin intensity at the entrance,M the magni-

fication factor andu the Fourier conjugate ofr . The validity condition of this solution

is whenλre/σKN ≫ 1. In practice, this condition is valid for photon energy range of

60 - 150 keV, away from its absorption edge.
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Chapter 3

Experimental facilities

This chapter will describe the instrumentation employed torealize the phase contrast

images used in this work. The experiments were mainly performed using a conventional

x-ray laboratory source, as will be described in Section 3.1. Measurement of the x-ray

spectrum, focusing the x-ray beam and measuring the source size will all be discussed

in this section. These results will become the basis for the developments described in

Chapters 4 and 5. Section 3.2 describes the image detection instruments; here mainly

represented by the CCD camera. Resolution and contrast, which control the image

quality, will be discussed in Section 3.3. Finally, the APS synchrotron facility will be

described briefly in Section 3.4 since experimental tomography data in Chapter 6 was

obtained using this source.

3.1 X-ray source

It is critical that the characteristics of the source used inx-ray imaging work are well

known. The experimental work in this thesis was performed using a conventional poly-

chromatic micro focus x-ray tube source (Fein Focus model FXE-160.50 fitted with

x-ray tube FXT-160.20) containing a Cu or W target [fei93a].In this section, we de-

scribe the salient characteristics of our source and the effects they have on imaging.

The geometry and setup of the micro focus x-ray tube is shown in Figure 3.1. Ac-

celerated electrons are produced across an applied voltage(in the range of kilo Volts)

49
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Vacuum

TargetTube
window

Hairpin filament

Anode

Centering coils

Electromagnetic
focusing lens

Figure 3.1: A micro focus tube that applied voltage accelerates electron beam onto a target,

which in turn, emits the x-rays. Source:[fei93b].

between the cathode (e.g. filament) and the anode (in a Fein Focus tube the anode is

located in front of the target [fei93a]; in other tubes the anode may be the target). Then,

the electrons bombard a metal target. In each collision, theelectrons slow down and

some of the kinetic energy translates into radiation. Around 1% of the energy appears

as x-rays, the remainder is mostly heat. For this reason, durable materials with high heat

conductivity (such as tungsten, copper or molybdenum) are chosen for target materials.

3.1.1 X-ray spectrum

In the conventional x-ray laboratory source, the interaction of the accelerated elec-

trons with the electrons in the metal target results in a continuous energy spectrum

(Bremsstrahlung) with some narrow peaks corresponding to the characteristic x-ray en-

ergies of the elements of the metal target.

A higher tube voltage generates higher energy x-ray radiation with a greater pen-

etrating power. A lower voltage generates a lower energy radiation which is better

absorbed by the sample. On the other hand, increasing the tube current improves the

signal to noise ratio by increasing the number of x-rays produced. This determines the

exposure time needed for taking an image.
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Figure 3.2: Combined detector response function and spectrum of the beam for a copper target

at 20 kV tube voltage.

The histogram of the acquired events that corresponds to thecombination of the

detected x-ray spectrum and the detector response functionacquired using the detector

described in Section 3.2, is shown in Figure 3.2 for a copper target at 20kV and Figure

3.3 for a tungsten target at 60kV. The detector response function alone is shown in

Figure 3.13. The acquired histogram is calibrated using known characteristic lines of

an x-ray source, in this case using241Am. The spectrum in Figure 3.2 is dominated by

Figure 3.3: Combined detector response function and spectrum of the beam for a tungsten target

at 60 kV tube voltage.
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the characteristic lines of copper with energies of 8.0 keV (Kα1 andKα2) and 8.9 keV

(Kβ1). There is also a significant amount of bremsstrahlung, and acut off energy of 20

keV. The detector resolution is around 0.2 keV, as shown in Section 3.2, so we can not

resolve theKα1 andKα2 lines which have a difference in energy of around 0.02 keV.

Similarly, for tungsten, the spectrum in Figure 3.3 is dominated by the characteristic

lines of tungsten with energies of 8.35 keV (Lα1 andLα2), 9.8 keV (Lβ1 andLβ2) and

11.3 keV (Lγ1) with a significant amount of bremsstrahlung. There is an apparent cut

off energy of 30 keV in this case, because the detector response has very low efficiency

for energies above 30 keV, as will be seen in Section 3.2.4.

3.1.2 Focusing the x-ray source

Early x-ray tubes used solid targets to emit x-rays while micro focus tubes used trans-

mission targets [fei93a]. A transmission target usually consists of a thin high density

layer (for example5µm of tungsten) which sits on a lower density backing material (for

example a thick sheet of aluminium or beryllium), as shown inFigure 3.4. Although the

tube can focus the electron gun to an almost zero diameter, once inside the target, the

electrons scatter, producing a volume of electrons that determines the general diameter

of the focal spot for x-ray emission. Due to the fact that the electron spot is focused

at the few microns thick high density layer on the target, theelectron volume spread is

limited and so limits the size of the x-ray source. High energy x-rays are produced from

collisions in the high density material. The electrons thatpass into the softer backing

material generate mainly low energy x-rays that fail to escape.

Micro focus tubes rely on a electromagnetic objective lens to focus the electron

beam on to the target, as shown in Figure 3.1, while the alignment of the beam uses

electromagnetic centering coils which allow the adjustment of the direction components

of the electron beam with respect to the axis of the tube. We optimize the source size

in our instrument by iteratively adjusting the electron beam focus and the centering

until the smallest features possible may be observed in a test mask. This procedure

is performed whenever a filament is replaced and periodically under normal operating

conditions.
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Figure 3.4: A laminated transmission target controls the size for the focal spot of x-ray

emission. Source http://www.reed-electronics.com/tmworld/index.asp?layout=article&articleid

=CA218790&ri...

(a) (b) (c)

Figure 3.5: Image of a gold lithographic mask under different focusing conditions (a) unfocused,

(b) improved focus and (c) optimal centering and focusing asjudged by the sharpness of the

image.
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Focusing and centering of the beam influences the quality of the image sharpness.

This is similar in effect to focusing in optical microscopy or in an ordinary camera;

better focusing leads to a sharper image, as shown in Figure 3.51. In Figure 3.5(c) with

the best focusing and centering, damage on the mask lamination and object sizes of

around20µm and larger are clearly visible. For poorer focusing and centering as in

Figure 3.5(a) and (b) the ability to resolve fine features is lost.

3.1.3 Finite source size

X-rays are produced from individual electron collisions within the volume of the elec-

tron interaction region. The source thus consists of very many incoherent point sources

which we model as transversely distributed according to theGaussian Law. Accord-

ingly, the x-rays from the source can be modeled as individual spherical waves emitted

by each point of the source and which are statistically independent. The intensity con-

tribution from different points of the finite source is assumed to have a weighting factor

of σ(r). In the small angle approximation each point of the source produces the same

zz1 2
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Figure 3.6: Different points from the source produces shifted on the image.

image of an object which becomes shifted by a definite distance, as shown in Figure

3.6. Points from the source at a given distancer produces a shiftR on the image with

R = r(z2/z1) = r(M − 1), whereM is the geometric magnification, as shown in

Figure 3.7. An object with a size ofh is imaged to a size ofH = Mh because of the

magnification withM = (z1+z2)/z1. The resulting image intensity is then given by the

convolution of the image with the geometric distribution ofthe source which is given

1I would like to acknowledge Andrew Stevenson (CSIRO) for lending me the gold lithographic mask.



3.1. X-RAY SOURCE 55

by the weighting of the source intensityσ(r) [Nug91]. So in a projection image of the

source we expect blurring due to diffraction and geometric blurring due to the source

distribution. The later will have a size that is characteristic of the size of the source

distributionσs.

zz1 2
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Figure 3.7: Geometric magnification, M

It is obvious that an object with size around the characteristic width of the source

distribution,σs, or less, will disappear or become much less visible. On the other hand,

an object with size much bigger thanσs will be practically undisturbed by the source

size. Therefore, in the free space propagation method, the achievable resolution depends

largely on the size of the source [Pog97]. For small enough propagation distances

the resolution that can be achieved in principle, is much smaller than the source size.

However, in the typical imaging experiment it is firstly difficult to place the detector

sufficiently close to the object and secondly this looses thebenefit of magnification.

Given the importance of source size, it is important to be able to measure it for a

given source. We describe this measurement in the remainderof this sub-section. Here

are some methods presented by Madsen [Mad89] which have beenapplied to measure

micro focus focal spot sizes:

• Using wire-type images as quality indicators. The actual focal spot size is found

after taking radiographs using a range of wire diameters both below and above

the expected focal spot size.

• Using the shadow of a straight edge or a round wire. The focal spot size is mea-

sured in the direction normal to the wire using the width of the penumbra after

taking into account scaling due to image magnification. It isnormally applied in

two orientations (horizontal and vertical) for a two dimensional measurement.
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• Using the shadow of a metal ball. This method can recover penumbra from any

side of the ball. It means that all orientations of the focal spot are explored in one

image.

• Using a special micro lithographic test mask and evaluatingthe radiograph.

Another method is to use a Fourier method by deconvolving theimage with that

which would have been produced by a coherent source [Maj96].Using a known size

pinhole is also a method for finding the source size of the system [Rob75], but it al-

lows very little radiation to pass. So for the case of an x-raylaboratory source this is

sometimes not practical as it needs long exposure times. Notwithstanding the number

of methods available, it is quite difficult to measure focal spot size accurately [Mad89].

As previously described, the beam produced by a laboratory micro focus x-ray in-

strument has a variety of energies up to the energy of the incoming electrons. Therefore

the effective distribution of the focal spot also depends onthe energy of the electrons,

determined by the tube voltage. The focal spot is smaller forlow tube voltage than

high tube voltage. This is simply because low tube voltage produces a smaller collision

region in the target [fei93b].

Round edges like wires and balls have advantages in alignment with the x-ray beam

direction but the partial transmission from the thinnest parts will increase the apparent

focal spot size. Conversely, a straight edge has to be aligned very carefully to the

direction of the x-ray beam but it can produce a more accuratesize measurement. To

eliminate these problems, the source size of our instrumenthas been measured using a

shadow of a thin sharp edge. The experimental setup as shown in Figure 3.8 was used

to measure the source size of our instrument. The figure showsthat the edge produces a

black to white transition in intensity i.e. a diffuse edge due to a presence of a penumbra.

The relation between the blurring size and the source size isfollows:

σi =
z2

z1
σs = (M − 1)σs (3.1)

whereσs is the characteristic size of the source andσi is the characteristic size of the

image blurring. In a noise free environment, the source blurring will be negligible when

z2 → 0 or when the detector is placed directly behind the sample. The same effect will
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Figure 3.8: Focal spot size of an x-ray source determines theblurring in the image.

happen whenz1 → ∞. A greater distance between the source and the sample will

reduce the blurring effect.

The experimental setup for our source size measurement wasz1 = 0.1m, z2 = 1.7m

andM = 18. The tube voltage was 20 kV and current 400µA. The imaging detector

is a direct detection CCD camera (liquid nitrogen cooled Photometrics CH260), with

512 x 512 pixels and27µm pixel size. Figure 3.9 shows an image of a sharp thin

edge of a50µm thick gold sample used to measure the vertical and horizontal source

size directly. Note that the dark region represents the goldmetal and the bright area

represents the hole. The intensity image was corrected for the dark current and for non

uniform illumination in the imaging system, according to Equation 3.3. In the plot,

the image is averaged in the direction orthogonal to the edgeto increase the photon

statistics. Note that the intensity in the detector area corresponding to the gold metal is

significantly decreased by absorption. The left and right penumbra should be identical

for an ideal source, but it is slightly different in this measurement due to asymmetry

in the source distribution. A zoomed in view of the right sideof the edge is shown in

Figure 3.10. The source FWHM consists of around 13 pixels, which corresponds to

19 ± 5µm. We note that there is no need to include other blurring effects due to the

detector in our case, as will be shown in Section 3.2. Similarly, it can be shown that

diffraction broadening is also negligible. The first Fresnel zone has a radius of about

3µm which is well below the detector resolution of27µm. In order for diffraction

broadening to be observed in our geometry the propagation distance would have to be
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(a) (b)

Figure 3.9: (a) Image of a sharp thin edge with (b) the corresponding plot for a vertically

orientated edge.

Figure 3.10: Zoomed in region of the right side from Figure 3.9(b).

more than7m.

The other side of the edge was also measured as a part of the uncertainty calcu-

lation from the measurement. The same procedure was also done for the horizontally

orientated edge. This time we found the source FWHM to be14 ± 5µm. Source size

measurements must be done regularly for our source as the operating condition change,

particularly after changing a filament.
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3.2 X-ray detectors

The selection of the detector will also determine the quality of the image. Our ex-

periments were mainly performed using a direct detection CCD camera (Photometrics

CH260, liquid nitrogen cooled to−105oC, with 512 x 512 pixels and27µm pixel size).

One image in our experiments was taken with a photographic film. The film used was

Agfa Scopix IC3B film. The spectral measurements of the source were performed us-

ing a Si-PIN Photodiode x-ray detector (XR-100CR) [Amp98] with 196 eV resolution,

which has a similar response function to the imaging detector.

The advantages of photographic film are that it usually has a larger field of view

than is possible with a CCD chip, its ease of positioning, good spatial resolution of

< 10µm and relatively low material costs. The disadvantages are its non-linearity and

the chemical processing required to obtain results. These make film inappropriate for

advanced imaging such as tomography.

The most obvious advantage of the CCD camera is the convenience of detection:

the image can be displayed and recorded digitally within a matter of seconds. These

detectors have finite resolution, defined by the pixel dimensions. Interesting properties

of the CCD camera are linearity of photometric response, signal to noise ratio (S/N

ratio), sensitivity, dark current and spatial frequency response. We present a limited

discussion of the CCD camera characteristics hereunder.

3.2.1 Linearity and uniformity

Linearity of detector response with the incident intensityis a useful prerequisite for

quantitative imaging. An x-ray photon that is absorbed in the depletion layer of a CCD

chip, generates a charge signal that, to a very good approximation, has a linear relation-

ship to the photon energy, E, [Fie72]:

signal =
E(eV )

3.65eV
electrons (3.2)

where the assumption is that the generation of one signal electron in silicon requires

3.65 eV of incident x-ray photon energy. This number varies slightly depending on the

characteristics of the silicon used, for example Lumb [Lum90] obtains a value of 3.68
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eV. The charge which has accumulated in each pixel is converted into a number. This

number is in arbitrary ’units’ and is called analogue data units (ADUs) which is not yet

calibrated into physical units. The gain used is thus a constant of proportionality which

converts ADUs into the amount of charge stored in each pixel.

Correction for non-linearities and non uniformity are madeby means of a dark cur-

rent and flat field correction. Correction was performed by:

Icorr =
Isample − Idark

Iflatfield − Idark
(3.3)

Dark current images is a background intensity, acquired without x-ray beam illumi-

nation. Flat field images is acquired with illumination. Both images were recorded

without a sample to perform corrections on a pixel by pixel division on the projection

image. This correction also minimizes systematic errors such as thermal noise (dark

Figure 3.11: Dark current image, averaged from 20 images of 120 seconds each.

current), surface imperfections in the detector window, and the influence of beam im-

perfections. To get as close as possible to the ”true” signal, the systematic errors should

be characterized, measured and removed from the signal.

In our detector, there is some damage in some pixels which will influence the dark

current image for a long exposure measurement. Figure 3.11 shows a dark current

image which is an average of 20 images of 120 seconds for each image. A cooled

Photometrics CH260 at−105oC produces dark current of 9 countss−1 pixel−1. The

damage in the pixels gives counts of 0.3% of dark current level signal. This indicates

that physical damage of the chip is negligible when the detector is used at−105oC.
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Figure 3.12: Flat field image, averaged from 20 images of 120 seconds each.

Other noise, such as the impurity on the surface of the beryllium exit window for

the x-ray source will be corrected from the flat field image. Figure 3.12 shows the im-

perfection in the beam uniformity because of the beryllium window. This imperfection

is around 3% of mean intensity.

3.2.2 Dark current

Electrons are not only produced by photons, but also by thermal energy. The electrons

produced by this mechanism are termed ’dark current’. The electron charge accumu-

lated in a CCD pixel due to dark current increases linearly with time. Cooling the

camera reduces this unwanted electron source by minimizingthe thermal energy. The

dark current is incorporated into the corrected signal as shown in Equation 3.3.

3.2.3 Signal to noise ratio

The effect of noise sources on the CCD performance is described by the signal to noise

ratio. The three primary sources of noise in a CCD camera are:

• Photon noise, also known as photonic or photon shot noise, isa fundamental

property of the quantum nature of light. This noise is equal to the square root of

the number of photons detected (according Poisson statistics). When the flux is

high enough, photon noise is the dominant source of noise.



62 CHAPTER 3. EXPERIMENTAL FACILITIES

• Preamplifier noise, also called readout noise, is generatedby the on-chip output

amplifier by the camera electronics. Under low flux levels, readout noise is the

dominant source of noise. The readout noise typically has anvalue of a few tens

of electrons.

• Dark current noise, or thermally generated charge, can be measured and sub-

tracted from data. Dark current noise is a particular concern in low-flux applica-

tions and long integration time (long exposures).

From that, theS/N ratio for a CCD camera can be calculated from the following equa-

tion:
S

N
=

Sobj√
Sobj + (N2

dark + N2
readout)

(3.4)

whereSobj is the signal from the object,Ndark dark current noise,Nreadout readout

noise. The available signal level from the object determines the integration time re-

quired to arrive at an acceptableS/N ratio. Acceptable S/N ratios vary with each ap-

plications.

3.2.4 Quantum efficiency

The quantum efficiency is defined as the efficiency ratio of thedetected energy to the

energy incident on the surface of the CCD, as shown in Figure 3.13. It is a function of

incident photon energy. The back illuminated device offerssuperior quantum efficiency

across a broader energy range. In the back illuminated CCD, photons enter into the

depletion region from the backside without first passing through electrode structure

which lies on top of the pixel structure on the front side, as shown on Figure 3.14.

These electrodes reduce the detection efficiency for low energy x-rays (and blue optical

light). The discontinuities in Figure 3.13 are the result ofintrinsic properties of silicon,

namely the absorption edge (L-edge at 0.1 keV and K-edge at 1.8 keV). As the x-ray

photon energy increases up towards 10 keV, the transmissionof photons through the

depletion region creates less signal resulting in a decrease in quantum efficiency. A

thicker depletion region (deep depletion device) overcomes this problem towards 20

keV. The improvement of the back illuminated device and the deep depletion device is
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Figure 3.13: QE curves for Back illuminated (BN), Front illuminated (FI) and Front il-

luminated deep depletion (FI DD) Devices. Source http://www.lot-oriel.com/site/sitedown

/cc workshopxraydeen.pdf.
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Figure 3.14: Structures of front illuminated and back illuminated devices.

confirmed by the experimental results of Lumb [Lum90]. However, a direct detection

camera still is not optimal for the hard x-ray region above 20keV.

3.2.5 Spread function

We will show now that our CCD camera has negligible detector spread function for our

experiments. We hypothesize that this is because it is a direct detector camera operating

at x-ray energies that are sufficiently low that pixel splitting events extend at most to

neighbouring pixels. By contrast, in an indirect detector,a material is used to convert

the x-ray photons to visible wavelengths which are subsequently detected by the CCD

in the usual manner. These converter materials, or scintillators, will introduce blurring
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effect in the detected signal [Ric98] which is dependent on energy.

To prove that our CCD camera has negligible detector spread function, we place

an edge directly at the CCD detector where there is no blurring effect from the finite

source size. This could not be achieved in reality because there is a vacuum chamber

between the CCD chip and the beryllium window on the camera head. So we placed

Figure 3.15: Plot of an edge placed directly to the camera head.

the sample as close as possible to the beryllium window, thatis around 24 cm in front

the CCD chip. The source is placed at 1.8 m from the CCD chip. A zoomed region

of the plot of the edge is shown in Figure 3.15. The plot shows that the change from

full shadow to full illumination occurs inside 1.5 pixels. This is compatible with the

effective CCD blurring being one pixel or less. Accordingly, we neglect CCD blurring

in our calculations. In this case, this will have the effect that the values we calculate for

source sizes are an upper limit.

3.2.6 Dynamic range

The dynamic range of a detector is the ratio of the largest detectable signal to the small-

est. In the x-ray region, the dynamic range is dependent uponthe energy,E(eV ), of the

incident photons. On a 16-bit device, as in our detector, thedynamic range is calculated

according the formula:

DR = 216.

(
g 3.65

E

)
(3.5)
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whereg is the gain of the system in photoelectrons per count. Typical x-ray photo-

graphic films have a dynamic range of≤ 100 for photon energies around 1 keV, while

our CCD detector has 1680 (assuming a gain of 7 photoelectrons per count). Note that

in this 16-bit device: the corresponding maximum ADU valuesare216 = 65536.

3.3 Resolution and contrast

Resolution and contrast are two factors for quantifying image quality. They are related

terms. Resolution is defined as the minimum distance betweentwo points at which a

certain contrast is achieved. The closer two objects that can be resolved by the system,

the greater the resolution of the system. Contrast is also sometimes called visibility.

It is defined for fringes as the ratio of the difference in the maximum and minimum

intensity (signal) divided by their sum, as first formulatedby Michelson [Bor99], and is

measured using:

Vimage =
Imax − Imin

Imax + Imin
(3.6)

whereImax andImin are the maximum and minimum intensities.

In the free space propagation technique, which is free from optical system aberra-

tions, the resolution and contrast of the image are determined by the properties of the

source size and the quality of the detection system (pixel size,p). In the case of spher-

ical wave illumination, the geometric magnification factor(M), will help to achieve a

better resolution as:

resolution ≥ 2p

M
(3.7)

The factor2 is used because of the Nyquist sampling theorem which is equivalent to

requiring that the closest distance for which two objects can be resolved is across 2

pixels.

In conclusion, the coherence of the illumination, finite source size, magnification

and pixel size of the imaging detector will all influence boththe resolution and the

contrast of the system. In the following chapter, we quantify and model some of these

effects.
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3.4 Synchrotron facility

Synchrotron radiation is produced by a relativistic accelerated charged particle. It was

used from the early seventies in a parasitic mode on particleaccelerators for high energy

physics (first generation) [Win95]. Afterwards, as dedicated light sources, second gen-

eration machines appeared. Then, a tremendous improvementin the stability and con-

trol of the trajectory of the charged particle beam, together with the appearance of multi

pole insertion devices to produce synchrotron radiation ina more efficient way, become

the fundamental characteristics of third generation synchrotron radiation sources.

Figure 3.16: A synchrotron setup facility. Source http://www-project.slac.stanford.edu/ssrltxrf/

spear.htm.

A schematic setup of a typical third generation synchrotronfacility can be seen in

Figure 3.16. The charged particles used at a synchrotron areusually electrons. An

electron gun supplies energetic electrons to the linear accelerator. The electrons are

accelerated to relativistic velocities and produce a radiation in a narrow cone as seen by

a stationary observer. Multi pole insertion devices and bending magnets are placed in

succession in a storage ring. The bending magnet causes electrons to follow a circular

trajectory along its length [Win95]. The flux and brightnessof the emitted x-ray beam

can be improved significantly by the insertion devices (wigglers and undulators). This
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Figure 3.17: Emission patterns of radiation from electronsin circular motion. Case I: at a low

velocity compared to the light velocity. Case II: approaching the light velocity (ie. a relativistic

particle). Source [Win95].

Bending magnet Wiggler

Undulator

(Incoherent superposition)(A "sweeping searchlight")
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Figure 3.18: Radiation from bending-, wiggler- and undulator magnets. Source [Win95].

is achieved with a spatially periodic magnetic field from permanent magnets. When the

charged particles oscillate radiation is emitted at each pole reversal and the combined

effect increases the flux in a given spectral distribution.

From the storage ring, a highly directional and polarized beam of x-rays is emitted

in the plane of the synchrotron, as shown in Case II of Figure 3.17. The emitted flux is

in the direction perpendicular to the acceleration of the electrons. These x-rays cover

a broad range of energies allowing for energy tuning using monochromators. These

facilities led to the development of beam lines where x-raysare used for numerous

experiments simultaneously in many experimental stations. The high flux and energy

tunability allow us to achieve extremely short detection times in an experiment.
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The main advantage of using an insertion device source (wiggler or undulator) in-

stead of a bending magnet source is that more flux will be produced in a given bandpass

for the same source size. Wigglers work by using an array of magnets with alternat-

ing field directions to force electrons into a sinusoidal trajectory through the straight

sections of a synchrotron. Wigglers provide a broad spectrum and high photon flux

(yet less bright than undulator) radiation. An undulator issimilar to wiggler in that it

uses an array of magnets. However, in an undulator the bending angle in each pole is

Figure 3.19: Spectral brightness for several radiation sources. Source http://www.spring8.or.jp/

e/generalinfo/overview/srhtml.

much smaller, so it does not increase the small angular divergence of the radiation, as

shown in Figure 3.18. In this case, the intrinsic brightnessof synchrotron radiation is

preserved. Furthermore, interference effects in the emission by the array of magnets

that forms essentially collinear source points produces a discontinue spectrum that is

enhanced at certain wavelength, as shown in Figure 3.19. This insertion device leads to

a higher emitted intensity in a given energy bandpass when compared to bending mag-
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nets. However, when monochromaticity is not a requirement then sufficiently broaden-

ing the bandpass of a bending magnet source can provide a similar net flux as for an

insertion device and have similar source limitations on theresolution [Pee05]. A facility

establishment at a bending magnet source is a useful tool formaterials, biological and

medical science and it can compete in terms of exposure timeswith insertion device

lines using a broad bandpass where energy purity is not an issue.

Our tomography data was acquired at the 2-BM (bending magnet) beam line at the

Advanced Photon Source (APS) at Argonne National Laboratory with the experiment

setup as shown in Figure 3.20. A beam size of4 × 100mm2 (vertical× horizontal)

is delivered from the bending magnet source. The energy range is tunable between 5

and 20 keV with a bandwidth ofdE/E < 10−3 by the use of a Kohzu double crystal

monochromator [Wan01]. The small lateral extent of the source (one-sigma source

size of102µm horizontally and35.1µm vertically) and the long source sample distance

of 50 m, results in a small incident divergence as seen from a point on the sample.

The beam divergence is2.04µrad × 0.7µrad (horizontal× vertical) and is therefore

Figure 3.20: Tomography experiment setup at the 2-BM facility. Source [Wan01].

excellent for coherent imaging applications. The rotationfor tomographic acquisition

is performed by a precision rotation stage. The transmittedx-rays through the sample

illuminate a300µm thick CdWO4 single crystal scintillator. The visible light emitted by
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the scintillator is relayed to a CCD detector by a microscopeobjective. A 10x objective

lens is used in our experiment. With the effectively grainless scintillator, the resolution

of the system is primarily determined by the effective pixelsize which is calculated

based on the4.65µm actual pixel size coupled by a 1x Tube lens and connecting tube

into the CCD camera. The resulting effective CCD pixel size is 0.735µm. The CCD

camera has 2048 X 2048 pixels. The CCD detector is mounted on atranslation stage

aligned with the x-ray beam in order to vary the sample to detector distance.

Tomography experiments generate large amounts of data and demand a lot of com-

puting power for data acquisition, image processing and reconstruction calculations.

The 2-BM facility has constructed a pipelined data acquisition and reconstruction sys-

tem that integrates a fast detector system, high speed data networks and a cluster of

parallel computers [Wan01]. It allows us to obtain a data setand perform a complete

tomographic reconstruction on the timescale of minutes. The data acquisition is con-

trolled by a graphical user interface program running on a Sun workstation.

Each data set contains 720 projections, with 2048x2048 pixels for each projection.

Several dark current and flat field images are also acquired along with the projection

data. These images are essential for correction and normalizing the projection images.

The flat field images were taken once every 101 projections to minimize the effects of

any beam instability. Dark current images were collected atthe end of each data set.



Chapter 4

Image modelling for transparent

samples

An image formation model is developed analytically for the phase-contrast radiography

technique using an extended and spatially incoherent source. Some parts of this chapter

have been published [Arh04]. In Section 4.1 we begin by developing an image forma-

tion model suitable for transparent samples in the short wavelength region for which the

transport of intensity equation is valid. We then use it to predict the sensitivity of the

imaging process as a function of spatial frequency. It is tested numerically in Section

4.2. In Section 4.3, the imaging model is experimentally demonstrated using an x-ray

radiography set-up, and a laboratory micro focus x-ray source. We find that the results

are in excellent agreement. This model is then used to define an objective filtering crite-

rion, in Section 4.4, that can be applied to improve the imagequality from phase images

obtained at different propagation distances.

4.1 Image formation model for a periodic object

In this section we investigate the transport of a radiation from a source of finite dimen-

sions through an object with only one dimensional phase variation. The basic arrange-

ment of the image formation model is shown in Figure 4.1.

We assume here that the sample influences only the phase of thebeam that it is a

71
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x−ray
source sample

z = 0
absorption image phase contrast image

z z

z = z

1 2

2

Figure 4.1: Free space propagation phase contrast imaging using x-ray source.z1 is the source

sample distance andz2 is sample detector distance

transparent but refractive sample. We suppose that the source has a spatial distribution

σ(r), and is spatially incoherent. Accordingly, the sample is illuminated by spherical

wave fronts, originating from points within the extended x-ray source. The sample

is placed at a distancez1 from the source. The wavefront is distorted by its passage

through the sample. The transmitted wave function is observed at the measurement

plane placed at a distancez2 from the sample. The object plane and the measurement

plane are assumed to be a planar surface orthogonal to the optic axis of the system. We

denote the coherent intensity due to the illumination of a single point in the source at the

measurement plane asIcoh(r , z2). The measured intensity distribution can be treated as

a simple convolution of the coherent image with the source intensity distribution after

appropriate scaling. A simple transformation of the Fresnel diffraction integral allows

us to write the resulting partially coherent image intensity as [Nug91]:

I(r , z2) =
1

M2

∫
Icoh(

1

M
r ′,

1

M
z2)σ(

1

M − 1
[r − r ′])dr ′ (4.1)

In order to be explicit, a Gaussian distribution is used as a model for the finite source in

this work:

σ(r) =
1

σs

√
2π

exp(− r 2

2σ2
s

) (4.2)

Here,σs is the characteristic width of the source distribution, andits value is calculated

according to:

σs =
FWHM

2
√

2ln2
(4.3)
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where FWHM is the full width at half maximum.

Consider an object with a one dimensional phase variation:

φ(r) = φ0cos(ks.r) (4.4)

with a sample period of2π/ks. The phase shiftφ(r), introduced by the sample, is

proportional to the real part of the refractive index,δ, integrated along the propagation

directionz.

φ0 cos(ks · r) = −2π

λ
δ

∫
cos(ks · r)dz

= −2π

λ
δt cos(ks · r) (4.5)

From Figure 4.2, we see that for a given periodic modulation,φ0 depends on the am-

x−ray
beam

z = 0

t

sample

propagation
direction

Figure 4.2: Sample with a one dimensional phase variation, tis the amplitude of the sinusoidal

profile of the sample.

plitude,t, of the modulation on the sample. The transmitted wave function for uniform

intensity plane wave illumination incident on the phase object is:

S(r , 0) = S0exp[iφ(r )] (4.6)

whereS0 is the amplitude of the incident wave, giving an intensity after the sample of

Icoh(r , 0) =| S(r , 0) |2= S2
0 .

The transport of intensity equation, in Equation 2.55, can then be used to describe the

propagation of the transmitted wave function :

∂Icoh(r , 0)

∂z
= −1

k
∇ · (Icoh(r , 0)∇φ(r)) (4.7)
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wherez is the effective propagation distance, as described in Equation 2.12.

Using Equation 4.4 and 4.6, the transport of intensity equation becomes:

∂Icoh(r , 0)

∂z
= −S2

0

k
|φ0|k2

scos(ks · r) (4.8)

We then assume that there is a small propagation distance, such that:

Icoh(r , z) ≈ Icoh(r , 0) + z
∂Icoh(r , 0)

∂z
(4.9)

Using Equation 4.8, this becomes:

Icoh(r , z) = S2
0

[
1 − z|φ0|k2

s

k
cos(ks · r )

]
(4.10)

In our case, ’small’ means that:

z|φ0|
k2

s

k
≪ 1 (4.11)

The partially coherent image intensity, from Equation 4.1,becomes:

I(r , z2) =
1

M2

∫
S2

0

[
1 − z2|φ0|k2

s

Mk
cos(ks ·

r
M

)

]
σ

(
1

M − 1
[r − r ′]

)
dr ′ (4.12)

Taking into account the source distribution, as given by Equation 4.2, the measured

image intensity is:

I(r , z2) =
S2

0

M2

[
1 − z2

Mk
|φ0|k2

sexp

(
−[

M − 1

M
]2

k2
sσ

2
s

2

)
cos(ks ·

r
M

)

]
(4.13)

We introduce some dimensionless variables :

NF =
kσ2

s

z1

, (4.14)

which is the Fresnel number of the source at the sample (similar case as in Equation

2.29 which is for the Fresnel number of the sample and has a factor 2π smaller than the

new defined Fresnel number), and:

ξ = σs · ks (4.15)

which describes the extent of the source in units of the characteristic length scale of the

sample. We can now rewrite Equation 4.13 as:

I(r , z2) =
S2

0

M2

[
1 − M − 1

M

|φ0|
NF

ξ2exp

(
−1

2
[
M − 1

M
]2ξ2

)
cos(ks ·

r
M

)

]
(4.16)
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We also use the dimensionless distanceX = r/σs, so the equation can be expressed in

terms ofξ andM :

I(ξ, M) =
S2

0

M2

[
1 − M − 1

M

|φ0|
NF

ξ2exp

(
−1

2
[
M − 1

M
]2ξ2

)
cos(ξ · X

M
)

]
(4.17)

It can be seen that the propagated intensity can be describedas a constant term that is

modulated at a frequency characteristic of the sample frequency. Accordingly, we can

define a general visibility function which takes into account the finite source size and

the propagation contrast mechanism for a transparent sample with a one dimensional

harmonic phase variation, in the region of validity for the transport of intensity equation:

I(ξ, M) =
S2

0

M2

[
1 − Vtrnsp(ξ, M)cos(ξ · X

M
)

]
(4.18)

The general phase visibility function is then:

Vtrnsp(ξ, M) =
M − 1

M

|φ0|
NF

ξ2exp

[
−1

2
(
M − 1

M
)2ξ2

]
(4.19)

The visibility is a measure of how well a given spatial frequency is preserved in the

imaging process. Ideal visibility would then have a value of1, according to the defi-

nition in Equation 3.6 while a visibility of zero would mean no visible contrast. The

Figure 4.3: Phase visibility function as a function of spatial frequency,ξ, and magnification,M ,

for a transparent sample withφ0 = 1 andNF = 10. Black colour represents 0 value and white

colour represents the highest value of 0.56.

visibility function used here is analogous to the modulation transfer function often used
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in image characterization. It is a useful guide to the quality of the image, as we will be

the case in this thesis, but must be used cautiously if quantitative information is sought.

Figure 4.3 shows the visibility function that describes thephase contrast in the image as

a function of spatial frequency and magnification for a transparent sample withφ0 = 1

andNF = 10. The visibility function will be maximum when∂Vtrnsp

∂ξ
= 0. This happens

at:

ξ =
√

2
M

M − 1
(4.20)

It is clear that forM → ∞, thenξ →
√

2. This means that for high magnification

the peak sensitivity of the visibility function will occur whenξ ≈
√

2. For large mag-

nifications the maximum in the visibility function is also largely independent of the

magnification. This is due to the exponential term of Equation 4.19, which describes

the effect of source blurring and which acts to reduce the visibility of higher spatial

frequencies. In such cases, the visibility will be limited by the source size. However,

when magnification is only slightly bigger than unity, the peak sensitivity of the func-

tion moves to higher spatial frequencies. Significant visibility can then be observed for

structures that are smaller than the source size. Of course in such cases finite detector

resolution may well prevent such features from being observed. As an example of these

phenomena, the experimental results of Cloetens et al [Clo96] show the visibility of

high spatial frequencies decreasing with increasing propagation distance (or increasing

magnification).

4.2 Numerical model

A confirmation of our developed model is given by a numerical simulation. The com-

plex index of refraction will be used to express the distribution of intensity and phase of

the sample. The algorithms that are used here for the numerical propagation of coherent,

monochromatic optical waves through space have been developed by Barty [Bar99]. As

shown in Section 2.2.1, the Kirchhoff formulation of scalardiffraction theory has been

used for plane waves with some appropriate modification for spherical waves.

In this numerical simulation, we model sinusoidal samples with various spatial fre-
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quencies. Figure 4.4 shows a sample with one spatial frequency, in this case corre-

sponding to the period of40µm. The length of the sample is250µm. The sample

thickness of15µm will give the valueφ0 = 1, for calculating the visibility in Equation

4.19. We used the refractive index data for Kapton (C22H10N2O4) at an x-ray energy of

Figure 4.4: One dimensional model of the sample for numerical simulation

11 keV. At that energy Kapton hasδλ = 2.558 x 10−6 andβλ = 2.783 x 10−9 [cxr95].

With these data we calculated intensity and phase directly after the sample (atz = 0)

which becomes the input for the Fresnel diffraction algorithm. The propagated image

with the parametersz1 = 0.1m andz2 = 1.7m, (Magnification factor =18), was then

Figure 4.5: The measured intensity image at the detector plane, with M=18x
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calculated by that algorithm. The intensity at the detectorplane for a finite source can

be calculated by the convolution of the propagated point source image with the magni-

fied Gaussian source distribution with FWHM = 10µm. The intensity at the detector

plane can be seen in Figure 4.5. The parameters above were chosen to imitate some

typical experimental conditions in our laboratory. The quality of the image can be de-

scribed quantitatively using the measured visibility. This is defined as the ratio of the

difference in the maximum and minimum intensity divided by their sum. The visibility

at a particular frequency is given by Equation 3.6.

Figure 4.6: Theoretical curve of visibility plotted against the simulation results for15µm thick

polyimide film.

Figure 4.6 shows a simulation showing the image visibility as a function of spatial

frequency compared with the theory (Equation 4.19). The numerical simulation results

show excellent agreement with the theoretical line for the visibility function. If we

rewrite the validity condition given by Equation 4.11 in terms of the Fresnel number,

NF , and spatial frequency,ξ, we get:

ξ2 ≪ NF

φ0

M

M − 1
(4.21)

in the case of our simulationφ0 = 1, NF = 10 and M = 18. The spatial frequency that

satisfies this condition isξ ≪ 3.3. This is consistent with Figure 4.6, where we see

that some deviations start to occur forξ > 3.3. The agreement actually appears to be
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very good even whenξ ≈ 3.3. This is probably because acos(ks · r) term has been

neglected from Equation 4.11 as it is always≤ 1, when it is included the restriction on

the remaining terms in Equation 4.11 is relaxed somewhat.

4.3 Experimental test of the model

In this section we test experimentally the validity of the x-ray phase image model. The

sample is made from a polyimide film (Kapton) with composition C22H10N2O4 and

density1.45g/cm3. This is the same material that we used in the numerical simulation.

Laser ablation by a mask projection micromachining system,which used a Lambda

Physik LPX210i krypton fluoride excimer laser operating at 248 nm, was used to etch

a grid of lines on the film1. The sample produced had a phase modulation designed to

have a square wave profile. However, the beam profile and othereffects in the ablation

process result in a tapered wall with rounded edges so that the resulting profile is a

reasonable approximation to that described in Equation 4.6. Three grid size periods

were used:43µm, 20µm and 10µm, see Figure 4.7. The depths of the grids were

measured using optical microscopy and the amplitudes of themodulations were found

to be40 ± 5µm, 30 ± 5µm and20 ± 5µm respectively.

Figure 4.7: Micrograph of the three grids with periods of43µm, 20µm and10µm as used in the

experimental work. The images are focused on the top layer ofthe sample.

The experiments were performed with a conventional micro focus x-ray tube source

1We would like to acknowledge J.P. Hayes (Industrial Research Institute Swinburne) for providing
the Kapton sample.
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[fei93a] using Cu as a target. The tube voltage was 20 kV and current 400µA. The

spectrum of the source was measured (see Figure 3.2) in orderto quantify the exper-

imental x-ray data sets. The non-monochromaticity of the radiation can be dealt with

Figure 4.8: The transmission of15µm polyimide sample in the interested energy range.

by making a weighted sum of the energy spectrum and using it tocalculate an effec-

tive wavelength for the analysis. When an object has an absorption edge in the energy

spectrum, the effective wavelength will be different. An effective wavelength can still

be identified but it no longer has a simple relationship to thespectrally weighted sum

wavelength, as is done later in Subsection 5.1.2. The polyimide sample used here does

not show an absorption edge in the relevant energy range, seeFigure 4.82. We cal-

Figure 4.9: X-ray images of the sample shown in Figure 4.7 at the detector plane for an exposure

time of 60 seconds. The samples are placed horizontally and the source had a FWHM of14µm.

2This plot is retrieved from The center for x-ray optics (CXRO) at Lawrence Berkeley National Lab-
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culated the effective x-ray energy of our spectrum to be 11 keV. At this energy, the

transmission through the thickest part of the polyimide sample (40µm) is 98.6% thus

making the sample essentially a phase object.

Figure 4.10: Average intensity in the row direction for the periods of43µm, 20µm and10µm.

As reported in Chapter 3, the actual source size was measuredand was found to have

a vertical FWHM of14± 5µm and a horizontal FWHM of19± 5µm. Thus our theory

can be tested for two different source sizes by placing the sample either horizontally or

vertically. The sample was placed at a distance ofz1 = 10±0.5cm from the source and

the detector was placed atz2 = 170±2cm from the sample. The images were recorded

through a direct-detection CCD camera (liquid nitrogen cooled Photometrics CH260),

with 512 x 512 and27µm x 27µm pixels. The recorded intensities are shown in Figure

4.9 for horizontally placed samples. The detector resolution will not limit the image

resolution of the smallest sample period of10µm because the image magnification in

this system is18x. The object period of10µm is represented by about 7 pixels in the

oratory, X-Ray Interactions With Matter, http://www.cxro.lbl.gov/opticalconstants/
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Figure 4.11: A comparison of the experiment results with thepredictions of our imaging model.

(a) Horizontally orientated sample with a source FWHM of10µm, and (b) Vertically orientated

sample with a source FWHM of18µm.

detector. The intensity images were corrected for the dark current image and for non-

uniform illumination in the imaging system, according to Equation 3.3. Figure 4.10

shows the intensity averaged in the row direction for the sample periods of43µm, 20µm

and10µm. This averaging process was done to increase the photon statistics.

The visibility is then obtained for each of the images, according to Equation 3.6,

and compared to the prediction of Equation 4.19. We can therefore scale the results

for the different sample thicknesses to a common arbitrary thickness, here we choose

15µm. The results are shown in Figure 4.11 for the two sample orientations for the

three sample periods for a thickness of15µm. This figure shows that the prediction of

Equation 4.19 using the test fit values of a vertical FWHM of10µm and a horizontal

FWHM of 18µm are consistent with our independent source size measurement. Our

experimental results indicate that there is a good agreement between theoretical and

experimental results for the visibility.

4.4 Objective image filtering

The visibility curve given in Equation 4.19 dictates that anobject with a certain spatial

frequency should be acquired at a particular optimal magnification. Different spatial

frequencies have different optimal magnifications. So for areal object with multiple
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spatial frequencies, we want to define a strategy that allowsus to objectively combine

multiple images which are each optimal for a particular spatial frequency. Our strategy

is to weight the contribution of each image according to the magnitude of the visibility

function for the optimal spatial frequency of each image.

We suppose thatN images have been acquired at a number of different magnifica-

tion factors, by placing the detector at a number of different distances and keeping con-

stant the sample to source distance. The combined image is then obtained by weighting

the spectral images as follows:

Ĩ(u) =
N∑

i=1

V (ξ, Mi)

VT (ξ)
Ĩi(u) (4.22)

where

VT (ξ) =
N∑

j=1

V (ξ, Mj) (4.23)

V is the visibility function from Equation 4.19 normalized tohave unity as the maxi-

mum value. It may be noted that in this case we do not need to know the values of|φ0|
(or NF ) a priori. The characteristic spatial frequencyξ = (ξx, ξy) is a two dimensional

vector in the transverse direction. DenoteĨ(u) as the Fourier transform of the func-

tion I(r). ThenĨi(u) is the Fourier transform of thei th image and̃I(u) is the Fourier

transform of the combined image.

Figure 4.12: (a). The input intensity in the planez2 = 0 varies from 0.996 (black) to 1 (white)

in arbitrary units. (b) The input phase shift varies from 0 (black) to 2 (white) in radian.
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Through a numerical model, we will show how this strategy of objective filtering

leads to a marked increase in image quality across the spatial frequency spectrum. A

transparent sample was taken to have the properties of polyimide film with density

1.45g/cm3. The dimensions of the sample are500 x 500µm square with a thickness

varying from0 to 15µm. The simulation is made at an x-ray energy 11 keV (λ = 1.1Å).

For these parameters, the thickest part of the sample has 99.6 % transmission. Figure

4.12 3 shows the radiation exit wave function after the sample, in terms of intensity

and phase shifts at the planez = 0. The input intensity in the planez = 0 varies

from 0.996 (black) to 1 (white) in arbitrary units. The inputphase shift varies from 0

(black) to 2 (white) in radian. This field is then propagated numerically through free

space, in order to simulate the coherent intensity at some distance downstream of the

sample, using the Fresnel diffraction formalism. Two different propagation distances

have been chosen:z1 = 0.3m and z2 = 0.06m to represent a small magnification

(M = 1.2x); andz1 = 0.3m andz2 = 1.2m to represent large magnification (M =

5x). The coherent intensity is then convolved with an appropriately magnified Gaussian

Figure 4.13: (a). Small magnification image (M = 1.2x) has been taken atz1 = 0.3m and

z2 = 0.06m. (b). Large magnification imageM = 5x has been taken atz1 = 0.3m and

z2 = 1.2m.

source distribution with FWHM =15µm. A convolution of each figure with a magnified

Gaussian source distribution will represent the actual image in the detector plane. The

3This figure is a photograph taken by a friend, http://www.paswindar.com/ and is used with permission
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Figure 4.14: Normalized visibility for (a). small magnification condition (b). large magnifica-

tion condition. (The top plots show two dimensional visibility as a function of spatial frequen-

ciesξx andξy. The bottom plots show the visibility along the angular radial direction).

small magnification (M = 1.2x) and large magnification (M = 5x) images are shown

in Figure 4.13. We notice that each of these images contains significantly different

information. More information concerning higher spatial frequencies is contained in the

low magnification data sets of Figure 4.13(a). In contrast, the large magnification data

sets of Figure 4.13(b) contain more information regarding the lower spatial frequencies.

This is a manifestation of the frequency dependence on propagation distance as we

described earlier. In a real experiment, achieving high spatial frequency images at small

magnification is a difficult task because the detector resolution becomes the limiting

factor in the visibility. We need, in this case, a very high spatial resolution detector.

Figure 4.14 shows the normalized visibility that we used to process the images for

objective filtering. Based on Figure 4.14(a), we see that visibility is nearly zero at|ξ| ≈
7 for the small magnification case. This means that object features of around6µm will
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Figure 4.15: The combined image using Equation 4.22 and 4.23. The image quality is improved

obviously.

start to vanish. While for the high magnification case of Figure 4.14(b) smallest object

features of around the size of the source are just visible. Using the normalized visibility,

the images in the Figure 4.13 were then processed according to the objective filtering in

Equations 4.22 and 4.23, in order to yield contrast enhancement for the whole frequency

range. The result is given in Figure 4.15. The improvement inthe image quality is

obvious. Figure 4.16 gives a comparison of the spatial frequency information along a

horizontal line through the center of the images in Figures 4.13 and 4.15 in the first 150

pixels. The plot shows how the objective filtering combines the high spatial frequencies

Figure 4.16: Comparison of the spatial frequency information along a horizontal line through

the center of the individual images and the combined image, in the first 150 pixels.
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and the low spatial frequencies.

4.4.1 Implications for quantitative phase retrieval

In this subsection we consider the implication of objectivefiltering for the phase re-

trieval images that we discussed in Section 2.4.2. In a noisefree environment, the best

condition for phase recovery is for very smallz2 because in this case, source blurring

will be negligible (see Equation 3.1). In this condition theretrieved phase is perfect for

both high frequency and low frequency features. However, inpractice we do not have a

noise free environment. In the presence of noise the retrieved phase from a very small

z2 will more sensitive to noise than one from a largerz2 [Pag04a]. For smallz2 the

change in intensity due to the evolution of the image on propagation is small; for large

z2 it is larger. Thus in the latter case a given amount of noise has less effect. Therefore

Figure 4.17: Phase retrieval in a noise free environment for(a) small propagation distancez2 =

0.03m, phase retrieval is perfect for the whole frequency spectrum, and (b) larger distance

z2 = 0.63m, the source blurring influences phase retrieval.

increasingz2 will reduce the effect of noise. But this will result in source blurring. The

objective filtering criterion in Equations 4.22 and 4.23 canbe used to improve this prob-

lem by creating a frequency weighted average of the phase based on multiple data sets.

The lost information because of noise in the case of very small z2 is ameliorated when

combined with information from a larger propagation distance which is more stable to
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noise. As we use a simple weighted average of the data sets theresulting image has

essentially the same frequency spectrum as the true image.

Noise can occur for many reasons in practice, including poordynamic range in the

detector, a weak radiation source that requires a long exposure time, and electronic

noise in the detector. In order to model the noise, we use pseudo-random numbers

with a normal (Gaussian) distribution with a mean of zero anda standard deviation of

a percentage of the mean intensity. For each pixel location,the noise is added to each

raw intensity value from which the phase is calculated.

To consider the effects of noise we start with a numerical model for a phase image

obtained in a noise free environment. This is shown in Figure4.17. Figure 4.17(a) is

the retrieved phase for smallz2 and is reconstructed from Figure 4.12(a) atz2 = 0 and

Figure 4.13(a) atz2 = 0.06m. The phase retrievals were calculated using the Transport

of Intensity Equation, as shown in Equation 2.57 which determines the phase of the ob-

ject by measuring the intensity and intensity derivative ofthe data. This reconstruction

can be assumed to be made at the mid plane between the two data sets and so is at a dis-

tancez2 = 0.03m, corresponding toM = 1.1. Note that the data was taken at a source

sample distance ofz1 = 0.3m. The figure shows that the retrieved phase is perfect for

the whole frequency range. On the other hand, Figure 4.17(b)is the retrieved phase for

largerz2. We use Figure 4.13(a) atz2 = 0.06m and 4.13(b) atz2 = 1.2m for the input

intensities. This second reconstruction will correspond to a mid plane from the two data

sets and so is at distance ofz2 = 0.63m, with M = 3.1. The effect of source blurring

on the retrieved phase is clearly seen.

The effect of noise in the mid plane intensity and the intensity derivative of the

modelled data can be seen in Table 4.1. We see that in the presence of noise, the

intensity derivative for the large propagation distance ismore stable to noise than for

the short propagation distance. If propagation distance isincreased then this will tend

to reduce the effect of noise because of the construction of the derivative in the intensity

∂I/∂z. However, it should be recalled that the effect of this strategy for reducing the

effect of noise will be limited by the image blurring that becomes apparent at larger

propagation distances due to finite source size. A more rigorous explanation regarding
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Noise 0 % mid plane intensity( I1+I2
2

) ∂I
∂z

small propg.

large propg.

Noise 10 % mid plane intensity( I1+I2
2

) ∂I
∂z

small propg.

large propg.

Table 4.1: The effect of noise on∂I
∂z for small and large propagation distances.
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the presence of noise in the phase retrieval can be found in the PhD thesis of Paganin

[Pag99]. From Equation 2.12, we understand that increasingpropagation distance can

be done by increasing eitherz1 or z2. If increasing propagation distance is to be done by

increasing the source sample distancez1, the requirement of ’small’ in Equation 4.11

must be fulfilled.

The effect of noise on the retrieved phase can be seen in Table4.2. The first column

of the figure shows phase retrieval for the small propagationdistancez2 = 0.03m with

a variation in the noise percentage. The second column showsphase retrieval for the

larger propagation distancez2 = 0.63m. The loss of information due to noise is seen

to be more severe in the small propagation case as is expected. In the third column

of Table 4.2, the objective filtering criterion for phase images has been implemented,

similar to Equation 4.22, as follows:

φ̃(u) =
N∑

i=1

V (ξ, Mi)

VT (ξ)
φ̃i(u) (4.24)

whereφ̃i(u) is the Fourier transform of thei th retrieved phase image and̃φ(u) is the

Fourier transform of the combined phase image. An improvement in the phase image

is readily apparent. We conclude that around 5% noise is at the upper limit for which a

reasonable image can be retrieved for this system, though improvement is seen in our

cases.

Quantitative improvement of the retrieved phase when considering the combined

image is apparent via a comparison of the real phase and the phase reconstruction in

the presence of 3% noise, see Figure 4.18. We see how the objective filtering strategy

takes the combination of small magnification and large magnification images so that the

filtered image is a better match to the real phase features. Note that there is an arbitrary

dc offset in the retrieved phase which means that the filteredphase, shown in Figure

4.18 can be offset downward to more closely align with the real value.

The phase image obtained using the objective filtering strategy led to a marked

increase in quality across the whole spatial frequency spectrum, as shown in Table 4.2.

This is helpful when attempting to solve problems in phase retrieval in the presence of

noise and allows an optimal phase recovery to be achieved. This filtering strategy can
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Noise z2 = 0.03m z2 = 0.63m filtered image

0%

1%

3%

5%

8%

Table 4.2: The effect of noise on the retrieved phase and the improvement in the phase image

using the objective filtering strategy.
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Figure 4.18: Comparison of the real phase with the phase reconstruction in the presence of 3%

noise, along a horizontal line through the center of images.An arbitrary constant offset in the

phases has been retained for case of comparison.

also be implemented for the tomographic reconstruction of more structurally complex

3D objects as is shown later in Section 6.3.1.

4.4.2 Objective filtering for experimental phase retrievaldata

In this subsection4, we show the application of the objective filtering criterion for exper-

imental neutron data. Experiments were conducted at the National Institute of Standards

Technology (NIST), NG0 Neutron Depth Profiling Facility, NIST Center for Neutron

Research (NCNR), Gaithersburg, MD, USA using a thermal distribution of neutrons

with a wavelength peak of4.32Å[McM01].

The experimental set up is shown in Figure 4.19. The source was a beam of neutrons

delivered by a neutron guide. A200µm diameter pinhole was placed at the exit of the

beam port in order to provide a point-like source of illumination. Then another25.4mm

aperture is placed about1.5m further downstream of the pinhole, in order to define the

4We would like to acknowledge Dr. Philip McMahon, Dr. BrendanAllman, Dr. D. L. Jacobson, and
Dr. M. Arif who acquired the neutron image data used here and in the published paper by Arhatari et.al.
[Arh04].
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Beam from
neutron guide

aperture for
point source

aperture for
beam divergence

sample

11.7 cm

471.2 cm
64 cm

180 cm

detector plane

Figure 4.19: Schematic set up of the neutron experiment

Figure 4.20: The tapered lead slug sample used in the neutronexperiment. The scale is in

millimeters.

maximum beam divergence. The sample in this experiment was atapered lead slug

approximately15mm in length and8mm in maximum diameter, with an approximately

1.5mm hole drilled through the center, see Figure 4.20.

The sample was placed atz1 = 1.8m from the first pinhole. Intensity images were

recorded using an NE426 neutron scintillator screen coupled with an optical CCD cam-

era with 512x512 pixels of50µm size. Three images were collected for three differing

propagation distances from the sample, allowing two different retrieved phase images

to be reconstructed. The first phase reconstruction can be assumed to be made at the

mid plane between the two distancesz2 = 11.7cm andz2 = 64cm and so is at a dis-
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(a) (b)

Figure 4.21: (a). Recovered phase from small magnification image (M = 1.21x) (b). Recovered

phase from large magnification imageM = 2.49x.

tance ofz2 = 37.9cm corresponding toM = 1.21. The second phase reconstruction

will correspond to a mid plane between the distancesz2 = 64cm andz2 = 471.2cm

and so is atz2 = 267.6cm, with M = 2.49. Both phase reconstructions are shown in

Figure 4.215.

We see that each of these images contains significantly different information. This

is a manifestation of the presence of noise in the phase reconstruction and of source

blurring. The closer image 4.21(a) tends to lose some low spatial frequency informa-

tion due to noise. The far image 4.21(b) tends to lose some high spatial frequency

information due to the blurring effect because of the finite source size. The objective

filtering criterion of Equations 4.24 was then used for the image combination strategy.

The result is shown in Figure 4.22. Improvement in the image quality is obvious across

the spatial frequency range. Quantitative comparison has been made between the stan-

dard deviation of the calculated phase reconstructions based on the knowledge of the

composition and size of the sample and the standard deviation of the combined phase

image of Figure 4.22. It was found that the combined image hasbeen improved by

a factor of 8 over the image in Figure 4.21(a), and by a factor of 2 over the image in

5The phase images and the filtered image presented here were calculated by Adrian P. Mancuso.
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Figure 4.22: The combined image using objective filtering strategy.

Figure 4.21(b).



96 CHAPTER 4. IMAGE MODELLING FOR TRANSPARENT SAMPLES



Chapter 5

Image modelling for complex objects

In this chapter, we extend the phase contrast analysis developed in Chapter 4 to the case

of a complex object. That is an object with some degree of absorption as well as phase

shift. Parts of this chapter have been published [Arh05]. InSection 5.1, we begin by

developing an image model in the region for which the transport of intensity equation

(TIE) is valid. This validity can be achieved by requiring only a small propagation

distance. The polychromatic nature of the beam is also considered in the development

of the image model. Experimental testing using an x-ray laboratory source has also

been done, and the results are in excellent agreement with theory. We show also a use-

ful application of the image model and illustrate its potential for improving resolution

and contrast. In Section 5.2 we describe an alternative image model that is valid for

larger propagation distances. The trade off is that this approach requires an additional

condition for validity; that is that the objects are low in absorption and slowly varying

in phase. Both models incorporate an extended partially coherent source. We discuss

the comparison of both approaches in Section 5.3. Hopefully, these considerations can

give a basic principal allowing for the establishment of practical applications in x-ray

radiography.

We consider a uniform transmission sample with a one-dimensional harmonic phase

and attenuation variation. The wave field at the exit surfaceof the sample (i.e. at

97
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distancez = 0) can be described by the complex function:

S(r , 0) = S0 exp[iφ(r) − 1

2
µ(r)]

or

S(r , 0) = S0 exp[iφ0 cos(ks · r ) − 1

2
µ0 cos(ks · r )] (5.1)

The sample influences not only the phase but also the intensity of the beam. The phase

shift, φ(r), and attenuation variation,µ(r), introduced by the sample, are given by:

φ(r) = φ0 cos(ks · r) = −2π

λ

∫
δ cos(ks · r)dz

= −2π

λ
δt cos(ks · r) (5.2)

µ(r) = µ0 cos(ks · r) =
4π

λ

∫
β cos(ks · r)dz

=
4π

λ
βt cos(ks · r) (5.3)

wheret is the amplitude of the modulation on the sample. Both functions 5.2 and 5.3

give the projection of a characteristic of the object along the optical axis.

5.1 Image modelling for short propagation distances

5.1.1 Image formation model

The basic configuration of the propagation-based phase contrast formation used here

is the same as in Figure 4.1. Using Equation 5.1, the coherentintensity image of the

transmission function directly after the sample (i.e atz = 0) is:

Icoh(r , 0) =| S(r , 0) |2= I0exp[−µ0cos(ks · r)] (5.4)

For sufficiently short propagation distances, we can use thetransport of intensity equa-

tion (TIE). Using Equation 5.2 for the phase shift and Equation 5.4 for the coherent

intensity directly after the sample, the TIE in Equation 4.7takes the form:

∂Icoh(r , 0)

∂z
=

I0 φ0 k2
s

k0
e−µ0cos(ks·r)

[
µ0sin

2(ks · r) + cos(ks · r)
]

(5.5)

Assume a small propagation distance,z, such that

Icoh(r , z) = Icoh(r , 0) + z
∂Icoh(r , 0)

∂z
(5.6)



5.1. IMAGE MODELLING FOR SHORT PROPAGATION DISTANCES 99

where, as we mentioned before, ’small’ means that:

z
k2

s

k0
| φ0 |≪ 1 (5.7)

Substituting Equation 5.4 and Equation 5.5 into Equation 5.6, we get:

Icoh(r , z2) = I0e
−µ0 cos(ks·r)

[
1 +

z2φ0k
2
s

k0
cos(ks · r) +

z2φ0µ0k
2
s

k0
sin2(ks · r)

]
(5.8)

An extended spherical wave source with spatial distributionσ(r), as described in Equa-

tion 4.2, is located at a distancez1 from the sample. The intensity measured at a distance

z2 from the sample, is then given by the convolution of the coherent intensity image at

the measured plane,Icoh(r , z2), with the source distribution:

I(r , z2) =
1

M2

∫
Icoh(

1

M
r ′,

1

M
z2) σ(

1

M − 1
[r − r ′])dr ′ (5.9)

Using Equation 5.8 for the coherent intensity, we can rewrite the above equation as:

I(r , z2) =
I0

M2

[
1

(M − 1)σs

√
2π

∫
e
−µ0 cos(ks· r′

M
)+

(r−r′)2

(M−1)22σ2
s dr ′

+
1

(M − 1)σs

√
2π

z2φ0k
2
s

Mk0

∫
e
−µ0 cos(ks· r′

M
)+

(r−r′)2

(M−1)22σ2
s cos(ks ·

r ′

M
)dr ′

+
1

(M − 1)σs

√
2π

z2φ0µ0k
2
s

Mk0

∫
e
−µ0 cos(ks· r′

M
)+ (r−r′)2

(M−1)22σ2
s sin2(ks ·

r ′

M
)dr ′
]
(5.10)

The difficulty of the integrals in this equation is strongly dependent on the model cho-

sen for the source distribution. In this case the gaussian distribution makes the integrals

intractable. However, in general we can simplify matters bylimiting the analysis to

low absorption objects. This does limit the generality of the TIE-based expression

somewhat. However, we still obtain an expression which is valid for a different set of

approximations than those developed previously; being that of pure phase [Arh04] or

slowly varying phase and small absorption [Tur04a]. As we shall also see, the approx-

imation allows us to develop the intensity expression into one based on the visibility

of the propagated object, which extends our previous pure phase result. By making the

smallµ0 approximation and expanding the exponential in Equation 5.8 to first order in

µ0, then applying the meaning of ’small’ in Equation 5.7 we obtain:

Icoh(r , z2) = I0

[
1 − µ0 cos(ks · r ) +

z2φ0k
2
s

k0
cos(ks · r )

]
(5.11)
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Using this equation for the coherent intensity and convolving with the source distribu-

tion, we can rewrite Equation 5.9 for the measured intensityas:

I(r , z2) =
I0

M2

(
1 − µ0 exp(−1

2
[
M − 1

M
]2σ2

sk
2
s) cos(ks ·

r
M

)

+
z2

M
φ0

k2
s

k0
exp(−1

2
[
M − 1

M
]2σ2

sk
2
s) cos(ks ·

r
M

)

)
(5.12)

Applying the dimensionless variables from Equation 4.14 asthe Fresnel number of the

source in the sample plane and Equation 4.15 as the number of resolution elements

contained in the source, we get:

I(r , z2) =
I0

M2

(
1 −

[
µ0 exp(−1

2
[
M − 1

M
]2ξ2)

−M − 1

M
φ0

ξ2

NF
exp(−1

2
[
M − 1

M
]2ξ2)

]
cos(ks ·

r
M

)

)
(5.13)

We again use the dimensionless distanceX = r/σs, so the equation can be expressed

in term ofξ andM :

I(ξ, M) =
I0

M2

(
1 −

[
µ0 exp(−1

2
[
M − 1

M
]2ξ2)

−M − 1

M
φ0

ξ2

NF

exp(−1

2
[
M − 1

M
]2ξ2)

]
cos(ξ · X

M
)

)
(5.14)

If we introduce the definition of the general visibility function:

I(ξ, M) =
I0

M2
[1 − VTIE(ξ, M)cos(ξ · X

M
)], (5.15)

then we can see that the visibility function for a sample witha one dimensional har-

monic phase and attenuation variation which takes into account the finite source size

and contrast mechanism in small propagation distance (TIE)regime, is:

VTIE(ξ, M) = µ0 exp

(
−1

2
[
M − 1

M
]2ξ2

)

︸ ︷︷ ︸
absorption−term

− M − 1

M

φ0ξ
2

NF

exp

(
−1

2
[
M − 1

M
]2ξ2

)

︸ ︷︷ ︸
phase−term

(5.16)

The equation contains separately the effects of absorptionand phase. The first term

of the equation (the absorption term) will have a maximum ofµ0 at ξ → 0 for any

magnification or whenM = 1 for any spatial frequencies. The last term of the equation

(the phase term) is the same as the visibility function for a pure phase sample, as we
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have seen in Equation 4.19. This term dominates when the absorption is negligible or

µ0 is zero. The phase term will be maximum atξ →
√

2 for M → ∞, as is described

in Equation 4.20. The absolute value of the visibility as a function of spatial frequency

and magnification can be seen in Figure 5.1. The figure shows the visibility for 10µm

thick Aluminium atλ = 1.1 Å, for the case where the Fresnel number,NF = 10, with

the values ofφ0 = 1.26 andµ0 = 0.02.

Figure 5.1: Visibility function as a function of spatial frequency,ξ, and magnification,M , for a

sample with a one dimensional harmonic phase and attenuation variation, withNF = 10. Black

represents a 0 value, and white represents the highest valueof 0.75.

Note that there are regions of parameter space for which the visibility vanishes. A

certain object size will be invisible under this particularmagnification condition. This

happens atξ ≈ 0.5 for M → ∞. This represents the worst case condition for imaging.

Similarly, it can be seen that at a given magnification there will be an optimal visibility

for a particular spatial frequency present in an object. Thesame phenomenon seen with

the transparent sample are also observed here. At high magnification the visibility will

be limited by the source size and the peak sensitivity occursat low spatial frequency.

The peak sensitivity of the visibility function moves to higher spatial frequencies when

the magnification is slightly bigger than unity and will be limited by detector resolution.
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5.1.2 Visibility for polychromatic phase contrast

We develop here a formalism for the visibility using a highlypolychromatic beam. A

characteristic property of our micro focus x-ray source is that it emits a range of en-

ergies, see Section 3.1.1. The effect of beam polychromaticity can be incorporated by

using a wavelength-dependent combined detector response function and energy distri-

bution of the beam,D(λ).

D(λ) = S(λ)d(λ) (5.17)

whereS(λ) is spectrum of the beam andd(λ) is detector response function. We define a

general visibility function for a polychromatic beam, based on our TIE model for small

propagation distance:

Ipoly(r)
I0

=

∫
Iλ(r)D(λ)dλ

I0

∫
D(λ)dλ

=
1

M2

[
1 − VTIE,poly(ξ, M) cos(ks ·

r
M

)
]

(5.18)

whereVTIE,poly is the visibility function for a polychromatic beam, based on small

propagation distances, according the formula:

VTIE,poly =

∫
VTIED(λ)dλ∫

D(λ)dλ
(5.19)

Thus we can obtain a polychromatic variant of the visibilityfunction for samples with a

one dimensional harmonic phase and attenuation variation,by multiplying both sides of

Equation 5.16 by the wavelength dependent functionD(λ) and integrating over wave-

length, to give:

VTIE,poly(ξ, M) =

∫
µ0(λ)D(λ)dλ∫

D(λ)dλ
exp

(
−1

2

[
M − 1

M

]2

ξ2

)

−M − 1

M
ξ2

∫ φ0(λ)
NF (λ)

D(λ)dλ
∫

D(λ)dλ
exp

(
−1

2

[
M − 1

M

]2

ξ2

)
(5.20)

This expression is easily be evaluated because the spectrumand the wavelength de-

pendent detector response are known, see Figure 3.2. This allows us to calculate the

visibility function accurately, especially in the energy region when there is an absorp-

tion edge of the sample.

The plot in Figure 5.2 shows the difference in visibility between polychromatic and

monochromatic beams for copper,7.5µm thick, with an absorption edge in the inter-

esting energy range. TheD(λ) used was that from Figure 3.2. The absorption edge of
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(a) (b)

Figure 5.2: (a). Polychromatic effect compared with monochromatic for copper,7.5µm thick,

with an absorption edge. (b). Broad spectrum effect compared with narrow spectrum effect.

copper can be seen in Figure 5.5. We used Equation 5.20 to calculate the polychromatic

effect with parametersz1 = 0.2m, z2 = 1.6m, FWHM=14µm. The monochromatic

Figure 5.3: Polychromatic effect compared with monochromatic for aluminium,7.5µm thick,

far away from absorption edge.

effect for the same sample has been calculated with the same parameters using Equa-

tion 5.16 with a wavelength,λ = 1.1 Å, as a spectrally weighted sum from the energy

spectrum. It seems that for particular object sizes, the polychromatic effect reduces

the visibility in the absorption term but increases it in thephase term. The effect can

also be characterized as a shifting in the spatial frequencyresponse of the object. For
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example an object with spatial frequencies that are invisible using a monochromatic

beam, will be visible using polychromatic beam and vice versa. It is also worth noting

that a filtered spectrum such as that produced from a broad source using a Ross filter

can further improve the contrast. The effect is shown in Figure 5.2(b) where the broad

spectrum of the source has a range as shown in Figure 3.2. The narrow spectrum has an

effective range from 7 to 10 keV. While a narrow spectrum may increase the contrast,

the reduction in flux may unacceptably degrade the signal to noise ratio.

Figure 5.3 shows the difference in visibility between a polychromatic and a monochro-

matic beam for aluminium,7.5µm thick, far away from the absorption edge. There is

very little difference between the two types of beam. The calculations were made using

Equation 5.20 and theφ0(E), andµ0(E) data for aluminium, shown in Figure 5.41 , for

the polychromatic beam. Equation 5.16 was used for the calculations for the monochro-

matic beam, withλ = 1.1 Å.

(a) (b)

Figure 5.4: (a).φ0(E) and (b).µ0(E) of aluminium, used for calculating polychromatic effect.

5.1.3 Experimental test of the model

For the experiment, we used a series of copper grid meshes as the samples. Grids with

six different mesh sizes were used to investigate six different spatial frequencies. The

samples have both phase and attenuation variation, as described in Equation 5.1. The

1This data is retrieved from NIST, National Institute of Standards and Technology, Physics Labora-
tory, USA, http://physics.nist.gov/PhysRefData/FFast/html/form.html.
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grid size and thickness of these samples are shown in Table 5.1. The experiments were

Sample Mesh size Period (µm) Thickness (µm)

(periods per inch)

1 100 253.8 7.5

2 200 126.7 7.5

3 400 63.5 5

4 1000 25.4 2.5

5 1500 16.9 2.5

6 2000 12.7 2.5

Table 5.1: The periods and the thickness of the Copper grid mesh materials used in the experi-

ment.

(a) (b)

Figure 5.5: (a).φ0(E) for a2.5µm thick copper (b).µ0(E) for a2.5µm thick copper.

performed with a Fein Focus x-ray tube source, as we mentioned before with the same

operating condition of 20 kV, 400µA. The spectrum of the source was measured using a

Si-PIN Photodiode x-ray detector. The imaging detector is aPhotometrics CH260 CCD

camera as used in the previous experiment. The combined detector response function

and spectrum of the beam is shown in Figure 3.2 for 20 kV and is used forD(λ) in

calculating Equation 5.20. Copper has an absorption edge inthe energy range used here,
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Figure 5.6: X-ray images of Sample 1,2 and 3 with respectively periods of253.8µm, 126.7µm

and63.5µm.

see Figure 5.52, so it is necessary to take into account the polychromatic effect. The

figures show the wavelength dependence ofφ0(E) andµ0(E) for 2.5µm thick copper

in the energy range from 5keV to 20keV. The source size was determined to have a

vertical FWHM of14 ± 5µm. As noted in Section 3.1 every filament change will lead

Figure 5.7: A comparison of the experimental results with the theoretical values for the poly-

chromatic visibility from Equation 5.20, with a source FWHMof 14µm. Three different sample

thicknesses (see Table 5.1) have been used.

2This data is retrieved from NIST, National Institute of Standards and Technology, Physics Labora-
tory, USA, http://physics.nist.gov/PhysRefData/FFast/html/form.html.
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to a difference source size. The sample was placed at a distance ofz1 = 20 ± 0.5cm

from the source and the detector was placed atz2 = 160 ± 2cm from the sample. This

configuration satisfies the small propagation distance requirement with an effectivez

of 0.18m. The images in the detector plane from samples 1, 2, and 3 are shown in

Figure 5.6. The intensity images were corrected for the darkcurrent image and for non

uniformities in the imaging system, using Equation 3.3. Thehorizontal visibility is then

obtained using Equation 3.6 for each grid size and compared to the theoretical value of

Equation 5.20. The results are shown in Figure 5.7. The vertical case is not discussed

here as it had almost identical results to the horizontal.

The copper mesh samples we used had different thicknesses for different mesh di-

mensions. Consequently, there is a different visibility function corresponding to each

different thickness. It can be seen over a range of differentspatial frequencies and

thicknesses that the agreement between the measured valuesand the predicted theoret-

ical values is excellent.

5.1.4 Applications

Alternative method for source size measurement

One of many practical applications of the developed model for samples with phase

and absorption variation is for source size measurement. A characteristic feature of

Figure 5.8: Star sample made of Aluminium,5µm thickness.
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the visibility function is the zero area orthe blind area. In this region a given spatial

frequency is invisible. If we examine a visibility plot without taking the absolute value,

there will be a reversal from positive contrast to negative contrast in the object fringes

as the spatial frequencies of the object pass through the blind area. This characteristic

can be applied to a sample with gradually varying spatial frequencies. Such a sample

might be the star sample, shown in Figure 5.8. We assume that the sample has the

properties of aluminium with5µm thickness. The object size is gradually varied with

the spoke size variation. The size of the square area is 500 x 500µm. For this numerical

simulation we used an x-ray energy of 11 keV (λ = 1.1Å). At this energy aluminium has

β = 4.476x10−8 andδ = 4.528x10−6. We used a source size of FWHM = 16µm, with

(a) (b)

Figure 5.9: (a). Image of the star sample, atz1 = 4cm, z2 = 5cm. (b). The correspond visibility

function

the characteristic value ofσs = 6.79x10−6m. The star sample is placed atz1 = 4cm

with z2 = 5cm, and the magnification is 2.25. The measured intensity at thedetector

plane can be seen in Figure 5.9. Measuring from this figure we see that the black-white

reverse area happens when the object size period is around23µm to 31µm. From the

visibility plot in Figure 5.9(b), we see that visibility is zero atξ = 1.45. Based on

Equation 4.15 that describes the relation between object size and source size which

is also valid for a complex object, we calculate back to the characteristic size of the

source which gives a source size with FWHM between13µm to 17µm. This compares
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(a) (b)

Figure 5.10: (a). Image of the star sample at different distances,z1 = 4cm, z2 = 30cm. (b).

The corresponding visibility function.

favorably with the actual source size used to create the intensity at the detector plane.

We can introduce a different set of distances so thatz1 = 4cm andz2 = 30cm, with

a magnification of 8.5 times. The calculated intensity can beseen in Figure 5.10. As

we expect, source blurring is more detectable for the largerpropagation distance. The

black-white reverse area happens at a bigger object size period. But in the correspond-

ing visibility plot a smaller value ofξ shows zero visibility. This value leads to the same

predicted size for the source. We propose that this technique can be an useful tool for

measuring source size.

Optimized radiography contrast: cracks

Another application we explored is to optimize the contrastof a radiograph of a piece

of aluminium containing fine cracks (micron size). In this experiment we used a1mm

thick aluminium-lithium alloy sheet3 with a0.3mm machined end slot. A fatigue load

was imposed, in tearing mode, to produce cracks a few mm long.The optical image of

both surfaces of the aluminium sheet can be seen in Figure 5.11. The dark region on

the left of the figures is the end slot which is the beginning ofthe crack growth. The

visible crack on the surface on both sides has been measured and is around20µm to

3We would like to acknowledge John Thornton (DSTO) for supplying this sample.
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Figure 5.11: Optical microscope image of the cracks in aluminium on both surfaces. The end

slot is at the left of the figures.

40µm wide along the bulk of its length.

Figure 5.12: Visibility of aluminium as a function of magnification, for a sample period of

30µm, at a source sample distance,z1 = 0.2m.

Next, we plot in Figure 5.12 the visibility as a function of magnification for10µm

maximum thickness of aluminium for a sample period of30µm, at source sample dis-

tance,z1 = 0.2m with source FWHM=14µm. It can be seen that the visibility in

theM = 9 geometry (phase image,z2 = 1.6m) is around four times higher than for

M = 1 (absorption image,z2 = 0m). The experiment for optimizing the contrast, was

performed with a Fein Focus x-ray tube source with the operating condition of 20 keV,
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Figure 5.13: Absorption contrast using a CCD detector, M=1 geometry.

400µA. The measured intensity for absorption contrast, see Figure 5.13, was taken us-

ing a Photometrics CH260 CCD camera. The image has been smoothed to reduce the

statistical noise and some structure can be discerned. In this case, the resolution of the

image is limited by the detector pixel size of27µm. In Figure 5.14 an x-ray film has

Figure 5.14: Absorption contrast using a film as detector with the correspond visibility function.

been used as the detector in order to show the same absorptionimage and to achieve

resolution that is comparable with the phase contrast image, shown in Figure 5.15. The

times 9 magnification of the phase-contrast image configuration should achieve a res-

olution of 3µm if limited by the detector pixel size. However, the resolution of this

phase-contrast configuration is actually limited by the source size to14 ± 5µm. The
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three images have been scaled so as to have the same field of view.

Figure 5.15: Phase contrast image, M=9 with the correspondsvisibility function.

In the plot of Figure 5.14, we see that absorption contrast can only achieve visibility

of around 0.02 for all crack sizes. In the case of the phase contrast image, see Figure

5.15, for whichM = 9 (z1 = 0.2m, z2 = 1.6m), the crack features are clearly vis-

ible and the structure is more detailed. The improved structure is partly due to better

resolution arising from higher magnification, but the increased contrast arises from the

effects of phase. The phase effect increases the contrast upto 5 times for a22µm object

period. And increased contrast is obtained for object periods between12µm to 55µm.

Optimized radiography contrast: corrosion

Corrosion is a different type of damage in materials. The physical size of corrosion

flakes, see Figure 5.16 is much bigger than micro cracks. Micro cracks have micron

size while corrosion flakes have millimeter sizescale. Due to their bigger sizes, is it

possible to optimize the radiography contrast? According Equation 5.16, if the object

period is large orξ → 0, the visibility will approach a maximum value ofµ0 and the

phase term approaches zero. We will demonstrate this experimentally for the case of

corrosion in an aluminium sample4. Corrosion was initiated by spraying salt (Na Cl)

mist onto an aluminium alloy plate inside a35oC chamber for 2 - 3 days. The sample

was tapered in its thickness, so that the top side of Figure 5.16 is the thinnest part,

4We thank to John Thornton for providing the sample.
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Figure 5.16: Optical image of the corrosion sample. Three circle show the example of the

corrosion flakes.

0.35mm thick, and the bottom part is thicker,0.85mm thick. The sample was made

to allow the x-ray beam to easily penetrate through the thinnest part of the aluminium

plate.

Figure 5.17: Contact image for the corrosion sample, M = 1

The same x-ray source, operating condition and detector as for the cracks experi-

ment were used. The contact image is shown in Figure 5.17. Three corrosion flakes in

the thinnest part of the sample are visible with limited contrast, while the thicker part

of the plate acts to block the x-ray beam. The phase contrast image for whichM = 9

times (z1 = 0.2m, z2 = 1.6m), is shown in Figure 5.18. The magnified image of the
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Figure 5.18: Phase contrast image,M = 9, for imaging area of a dot square shown on Figure

5.17.

flake in the first circle in Figure 5.17 can be seen. There is no increasing contrast, as we

expected.

5.2 Image modelling for long propagation distances

We discuss another image formation model that is valid for larger propagation distances.

We call this approach the Contrast Transfer Function (CTF) model. It is based on a more

general treatment of x-ray image formation by Fresnel diffraction theory. We rewrite

the CTF equation as seen in Equation 2.66 as:

Ĩcoh,z(u) = I0

[
δ(u) − µ̃(u) cos(πλzu2) + 2φ̃(u) sin(πλzu2)

]
(5.21)

In Fourier space, the effect of a partially coherent extended source is equivalent to

multiplication of the coherent intensity,Ĩcoh,z(r), by the Fourier Transform of the source

distribution,σ̃(u). Then, the measured intensity at a distancez becomes:

Ĩz(u) = I0

[
δ(u) − µ̃(u) cos(πλzu2) + 2φ̃(u) sin(πλzu2)

]
σ̃(u) (5.22)

This eliminates spatial frequencies above some cut-off value, corresponding to the

width of the source size, see Figure 5.19. This is consistentwith the previous discussion

in the explanation of Figure 5.1.
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Figure 5.19: Absorption component and phase component in the presence of an incoherent

extended source.

We now include the phase shift and the attenuation variationfrom Equations 5.2

and 5.3, and use the relationks = 2πus. The Fourier Transform of the phase shift and

attenuation variation becomes:

φ̃(u) = φ0[δ(u − 2πus) + δ(u + 2πus)] (5.23)

µ̃(u) = µ0[δ(u − 2πus) + δ(u + 2πus)] (5.24)

Now, φ̃(u) has a magnitude ofφ0 only at frequencyus and is zero elsewhere. Similarly,

µ̃(u) has a value ofµ0 only at frequencyus and is zero elsewhere. Substituting into

Equation 5.21:

Ĩcoh,z(us) = I0

[
δ(us) − µ0 cos(πλzu2

s) + 2φ0 sin(πλzu2
s)
]

(5.25)

If we take the Fourier Transform of Equation 5.9 on both sidesand apply only for one

object frequencyus, we find:

Ĩ(us, z2) =
1

M2

[
Ĩcoh(Mus,

z2

M
)σ̃((M − 1)us)

]
(5.26)

In this case we can writeu′ = Mus andz2 = Mz. So, for a small incoherent source, we

multiply Equation 5.25 with the Fourier transform of the source intensity distribution,
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σ̃(us), and after appropriate scaling we find:

Ĩ(u′, z) =
I0

M2

[
δ(u′) − µ0 cos(πλzu′2) + 2φ0 sin(πλzu′2)

]
σ̃(

M − 1

M
u′)

=
I0

M2

[
δ(u′) −

{
µ0 cos(πλzu′2) − 2φ0 sin(πλzu′2)

}
σ̃(

M − 1

M
u′)

]
(5.27)

This gives a simple interpretation in terms of image contrast of the amplitude and phase

components of the object transmission function. In this case, we can write Equation

5.27 in terms of the general visibility function based on theCTF method as follows:

Ĩ(u′, z)

I0

=
1

M2
[δ(u′) − VCTF (u′)] (5.28)

VCTF (u′) represents the image contrast due to both the absorption andthe phase varia-

tion. The visibility as a function of spatial frequency, based on the CTF approximation

becomes:

VCTF (u′) =
[
µ0 cos(πλzu′2) − 2φ0 sin(πλzu′2)

]
σ̃(

M − 1

M
u′) (5.29)

Equation 5.28 is written in the same form as Equation 5.15 butin the frequency domain.

If we take the Fourier transform of Equation 5.15, we get:

Ĩ(u)

I0
=

1

M2
[δ(u) − VTIE(u)δ(u ± 2πu′)]

or

Ĩ(u′)

I0
=

1

M2
[δ(u′) − VTIE(u′)] (5.30)

The equation is valid only for one frequency,u′, because of the multiplication by the

delta functionδ(u ± 2πu′). As the spatial frequency term,u′, only appears in the vis-

ibility term as a square then this equation becomes directlycomparable to Equation

5.28. The main difference between the two visibility terms then arises from the dif-

ferent approximations made in reaching them: the CTF approximation is valid under

the approximations in Equations 2.67, 2.68, 2.69, while theTIE approximation requires

µ(r) ≪ 1 and short propagation distances for validity. Figure 5.20 shows the func-

tion VCTF from Equation 5.29 that consists of the absorption term withamplitudeµ0

and the phase term with amplitude−2φ0. This is for a2µm thick aluminium sample

at z1 = 2m, z2 = 2m, FWHM =10µm. The absorption term becomes less important
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Figure 5.20: Components of visibility function based on CTFmethod.

for large propagation distances and/or at high spatial frequencies. The absorption term

also tends to reduce the visibility from the phase component. Therefore sometimes a

pure phase sample becomes a good choice for exploring large propagation distances,

for example in experimental work that has been done by Turneret.al. [Tur04a], and by

Cloetens et.al. [Clo97b].

5.2.1 Talbot effect

A special characteristic of the imaging model based on the CTF method is that it is

valid for large propagation distances. This means that several contrast reversals may be

observed. These sequential peaks of contrast are a manifestation of the Talbot effect.

The Talbot effect describes the phenomenon that under spatially coherent, quasi

monochromatic plane wave illumination, perfect images of aperiodic object are ob-

served if the propagation distance is an integral multiple of the Talbot distance of

zT = 2a2/λ, wherea is the period of the object [Clo97b]. Talbot images show two

types of periodicity; periodicity in spatial frequencies of the object, and periodicity in

the direction of propagation distance (Talbot distance).

The requirement of spatial coherence on the beam for Talbot effect implementation

can be achieved by placing the sample at a large enough distance,z1. It means a high

flux beam is necessary, such as at synchrotron sources. The visibility based on the CTF
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method for a pure phase sample is given by:

VCTF (u) = 2|φ0| sin(πλzu2)σ̃(
M − 1

M
u) (5.31)

The equation shows that zero contrast occurs whenλzu2 is an integer number. So that,

for the corresponding frequencyu = 1/a, zero contrast occurs at repeating propagation

distance of:

z =
a2

λ
, 2

a2

λ
, 3

a2

λ
, . . . n

a2

λ
(5.32)

where n is an integer.

Zero contrast occurs also in repeating object period of:

a =

√
λz

1
,

√
λz

2
,

√
λz

3
, . . .

√
λz

n
(5.33)

Figure 5.21 shows a simulated intensity image of a star sample of Kapton (C22H10N2O4),

a pure phase sample, with parametersz1 = 1.5m, z2 = 1.5m, FWHM =5µm, λ = 1.1Å,

sample thickness =5µm, sample diameter =200µm. We see that zero visibility occurs

Figure 5.21: Intensity image of a Kapton star sample5µm thick, with the correspondsVCTF

plot.

several times across the range of spatial frequencies of theobject. Zero visibility at

this propagation distance indicates clearly that a single Fresnel diffraction pattern can

contain no information on certain spatial frequencies. We calculate that zero visibility

occurs for object sizes:9µm, 6.4µm, 5.2µm, 4.5µm etc. In order to observe this phe-

nomenon the propagation distance must be sufficiently largeso that the zero crossings

in Figure 5.21 are reached.
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z contrast images intensity profiles

1
2

a2

λ
1st max(pos.)

a2

λ
1st zero

3
2

a2

λ
2nd max (neg.)

2a2

λ
2nd zero

5
2

a2

λ
3th max (pos.)

Table 5.2: Talbot images for a5µm period Kapton grating.
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For a highly coherent beam, the damping factor from the finitesource size will be

small. Consequently, the maxima in contrast will also be repeated with almost the same

contrast value. The maximum contrast occurs whenλzu2 is a half odd integer number,

that is at repeating propagation distances of:

z =
1

2

a2

λ
,

3

2

a2

λ
,

5

2

a2

λ
, . . .

ma2

2λ
(5.34)

wherem is an odd number.

Table 5.2 shows images of a5µm period Kapton grating with5µm thickness, taken

at increasing distances,z2, keepingz1 = 1m constant, so that the effective propagation

distance,z (according Equation 2.12), is achieved as shown in the first column. FWHM

of 5µm and an x-ray wavelength ofλ = 1.1Å is used. The periodicity in the propa-

gation direction is not perfect in intensity as shown in the intensity profiles in the last

column. The decreasing of contrast in the Talbot images is due to the extended source

size. It is also observed that the third row has negative contrast compared to the first

row, as expected from the CTF.

5.3 Simulation results

In this section we show the comparison between the TIE based method and the CTF

based method, in numerical simulations. We use the properties of an aluminium object

with a sinusoidal profile atλ = 1.1Å, to represent an object with absorption and phase

variation. Variation in the period of the sinusoidal profilehas been made for this sim-

ulation to represent the spatial frequency variation. The refractive index of aluminium

at this energy isδ = 4.48 x 10−6 andβ = 4.42 x 10−8. A Gaussian source distribution

with FWHM of 10µm is used. The visibility is then measured using Equation 3.6.

The simulated results are compared with the Visibility based on the TIE method,

VTIE, from Equation 5.16 and the Visibility based on the CTF method, VCTF , from

Equation 5.29. Figures 5.22 and 5.23 show the visibility in the small propagation regime

(z1 = 0.1m andz2 = 1m), for two different amplitude modulations of2µm and6µm,

with φ0 = 0.5 andµ0 = 0.01 for the 2µm amplitude modulation; andφ0 = 1.5 and

µ0 = 0.03 for the 6µm amplitude modulation respectively. Each simulation point
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Figure 5.22: Simulation results of aluminium at a small propagation distance (z1 = 0.1m and

z2 = 1m), compared with the theoretical visibility function basedon TIE method.

Figure 5.23: Simulation results of aluminium at a small propagation distance (z1 = 0.1m and

z2 = 1m), compared with the theoretical visibility function basedon the CTF method.
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Figure 5.24: Simulation results for aluminium at a large propagation distance (z1 = 1m and

z2 = 1m), compared with the theoretical visibility function basedon the TIE method.

Figure 5.25: Simulation results for aluminium at a large propagation distance (z1 = 1m and

z2 = 1m), compared with the theoretical visibility function basedon the CTF method.
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represents one spatial frequency of the object. It is shown that theVTIE is a better fit to

the simulation results than theVCTF in the small propagation regime.

Figures 5.24 and 5.25 show the visibility in the large propagation regime (z1 =

1m andz2 = 1m), for two different amplitude modulations of2µm and6µm. It is

shown that theVCTF is a better fit in this condition, provided theVCTF approximation

in Equations 2.67, 2.68 or 2.69 is satisfied.

Figure 5.26: The slowly varying phase condition is well satisfied for30µm object period.

Figure 5.27: The slowly varying phase condition is no longerfulfilled for a 10µm object period

In Figure 5.25 the theory for theVCTF for the 6µm amplitude modulation is no

longer a good approach foru
√

λz > 0.25, or similarly it is no longer a good approach

for object periods smaller than30µm under this experimental conditions. As we see
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from Equations 2.67, 2.68 or 2.69, the slowly varying phase condition can be rewritten

as :

|φ(r) − φ(r − λzu)| ≪ 1 (5.35)

This means that the phase shift must vary by much less than oneradian over a distance

λzu. For a30µm object, the distanceλzu is 1.8µm. Figure 5.26 shows the phase after

the sample, the phase shift over the equivalent distance ofλzu and the phase difference.

It is shown that the phase difference is much smaller than one. Thus, for a30µm object

period, the slowly varying phase condition is satisfied . Fora smaller object period, the

slowly varying phase condition is no longer fulfilled as is shown in Figure 5.27 for a

10µm object period, where for our exampleλzu is 5.5µm.

5.4 Conclusions

We have derived a visibility function for x-ray flux that propagates, under conditions

satisfying the TIE solution, from an object with a one dimensional phase and attenuation

variation with given feature sizes. This visibility function takes into account the effect

of partial coherence from a source due its finite size and to its polychromatic emission.

Our results are compared with experimental measurements and excellent agreement

is shown. An application of this model using a micro focus x-ray laboratory source

convinces us that this model is very useful as a tool for guiding experimental conditions

[Tho05]. Our visibility function is then compared with thatderived from the contrast

transfer function formalism, which is valid under different conditions. It can be seen

that a correct application of the two techniques has the potential to cover a broad range

of practical applications for x-ray radiography.
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Tomography

The goal of this technique is implicit in its name. Tomo is derived from the Greek word

for slice. It is a method for imaging a single slice of a three-dimensional object without

superimposing the on the other layers in the object as what happen with the projec-

tion imaging technique. For example, in a conventional chest radiograph, the heart,

lungs, and ribs are all superimposed on the same film, whereasa computed tomography

(CT) captures a slice through each organ in its actual three dimensional position. X-

ray tomography started in the 1970’s with Hounsfield’s invention of the first computed

tomography scanner. Dedicated to medical imaging, this device brought a Nobel prize

(1979) to its inventor. The required data in x-ray tomography are obtained from trans-

mission measurements whose paths are restricted to lie within the plane of interest and

are viewed under a large number of incident angles.

In most tomography work, the reconstruction of the distribution of the imaginary

part of the refractive index in the object is obtained from intensity measurements based

on absorption. In recent years effort has been made to develop tomographic recon-

structions based on phase information. The reconstructionof the full complex refrac-

tive index in a slice has been achieved by some groups [Bar00;Bro99; Clo99a; Jon04;

McM03b] from amplitude and phase reconstructions. X-ray phase tomography has also

been demonstrated at extremely high resolution [McM03a].

In Section 6.1, we begin with a basic review of the tomographic technique. This is

followed in Section 6.2 by developing an image formation model for the reconstruction

125
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of a 3D object. We quantify the object reconstruction in terms of a quality function

which varies as a function of object frequencies. We define our quality function as

a comparison between the reconstruction and the actual distribution of the physical

quantity (δ or β) in the object. The effect of an extended source size, such asthat

in a micro focus x-ray source is also incorporated. This model will be useful for the

experimental design of tomography experiments. The model is tested numerically in

Section 6.3. The effect of noise on reconstructions will also be discussed. Finally, we

show some experimental results in Section 6.4.

6.1 Principle

The principle of tomography is illustrated schematically in Figure 6.1. An x-ray beam

passes through a sample and produces a 2D projection of the sample which is recorded

on a CCD detector set behind the sample. A number of 2D projection images for differ-

ent rotations of the sample are combined mathematically to make a sinogram. Then a

filtered back projection software is used to re-create a 3D map of the object. Two of the

many basic theories for tomography will be explained here: these are Radon transform

theory and the Fourier slice theorem.

x−rays

sample

detector

N projections images
reconstruction

reconstructed 
sample

software

Figure 6.1: Principle of x-ray tomography.
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6.1.1 Radon transform theory

Analytically, the measured projection images can be described by a Radon Transform

which corresponds to one angular position,θ, of the sample in its rotation axis. The

Radon transform is a projection transformation of a two-dimensional function onto po-

lar coordinate space, which transforms lines through an image to points in the Radon

domain. The Radon transform of a density distributionρ(x, z) in each slice for every

angular position, is given by [Her79]:

Pθ(xr) =

∫
ρ(xr cos θ − zr sin θ, xr sin θ + zr cos θ)dzr (6.1)

where the slice is in thex−z plane, and thexr-zr plane is the rotated coordinate system

under rotation by an angleθ around a rotation axis (y axis here), as shown in Figure 6.2.

This equation describes the integral along a linezr through the image. The x-ray beam

x

z

x

z

r

r

θ

x−rays

o o(x  , z  )

object density
      (x,z)ρ

x r

projection

θ

x r

sinogram

single projection

sine wave
traced out by
a point at (x  ,z  )o o

θ rP  (x  )   

Figure 6.2: Radon transform in each slice.

is parallel to thezr axis. The functionPθ(xr) is called a sinogram because the Radon

transform of an off-center point object is a sinusoid. The coordinate transformations in

this case are: 
 x

z


 =


 cos θ − sin θ

sin θ cos θ




 xr

zr


 (6.2)
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and the inverse coordinate transformation is:

 xr

zr


 =


 cos θ sin θ

− sin θ cos θ




 x

z


 (6.3)

It is sufficient to acquire images over a half turn, because images recorded180o apart,

are each other’s mirror image, i.e.Pθ(xr) = Pθ+π(−xr) [Bar81].

The distribution of a quantity, such as the object density, is then reconstructed from

the projections of many different angles (or the sinogram).This is the inversion of the

Radon transform in Equation 6.1 or the back projection operator. Mathematically, the

Radon back projection operation is defined as:

ρBP (x, z) =

∫ π

0

Pθ(x cos θ + z sin θ)dθ (6.4)

The back projection operation simply propagates the measured sinogram back into the

image space along the projection paths, where each point in the Radon domain is trans-

formed to a straight line in the image. In the parallel beam geometry, the slices of the

sample corresponding to different heights in the sample canbe treated independently.

To obtain a complete 3D distribution, one must reconstruct for every value of y. The

simple back projection image,ρBP (x, z), is, however, not exactly the same as the orig-

inal image,ρ(x, z), but is badly blurred. This is because the back projection operation

is not a reversible process of the Radon transform. To be truly reversible this require

the inverse Radon transform associated an infinite number ofprojections and an infinite

number of zero-width pixels (see discussion at last part of Section 6.1.2).

6.1.2 Fourier slice theorem

The Fourier slice theorem relates the Fourier transform of the object distribution and

its projections, as shown in Figure 6.3. The one-dimensional Fourier transform of a

single projection corresponds to a single radial line through the center of the frequency

image. It follows that enough projections will fill up a complete estimate of the entire

frequency domain data. It should then be possible to reconstruct the object by simply

performing a two-dimensional inverse Fourier transform [Kak88].
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projection profile

1D FFT

creates line 
central slice of

entire
frequency image

2D FFT −1

Figure 6.3: Fourier slice theorem

The derivation of the Fourier slice theorem can be written analytically by consider-

ing the rotation coordinate as in Equation 6.3. In the rotation coordinate systemxr-zr,

a projection of the object density along lines of constantxr can be written as:

Pθ(xr) =

∫
ρ(xr, zr)dzr (6.5)

So, its one-dimensional Fourier transform is given by:

Sθ(u) =

∫
Pθ(xr)e

i2πuxrdxr

=

∫ [∫
ρ(xr, zr)dzr

]
ei2πuxrdxr (6.6)

where the variableu is the frequency. Using the relationships in Equations 6.2 and 6.3,

this equation can be transformed into thex − z coordinate system, as:

Sθ(u) =

∫ ∫
ρ(x, z)e−i2πu(x cos θ+z sin θ)dxdz

=

∫ ∫
ρ(x, z)e−i2π(uxx+uzz)dxdz (6.7)

The right hand side of the equation represents the two-dimensional Fourier transform at

a spatial frequency of(ux = u cos θ, uz = u sin θ). Thus, the one-dimensional Fourier

transform of the projections is given by the two-dimensional Fourier transform of the

object density.
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(a)

ideal inadequate bandwidth
limitedsamplingsituation

(b) (c)

Figure 6.4: Frequency domain data available from one projection (a) ideal situation, (b) and (c)

actually measured.

The blurring of the reconstructed object can then be explained according to Figure

6.4. The infinitely long pie-shaped wedge of Figure 6.4(a) iswhat we want from one

single projection. What is actually measured is limited by sampling, Figure 6.4(b),

and bandwidth, Figure 6.4(c). High frequency losses due to the bandwidth limitation

explains the majority of the blurring in the reconstructionand other artifacts can also

arise if sampling is not sufficient.

6.1.3 Filtered back projection

A ramp filter,h(x), defined in frequency space asH(u) = |u| is implemented to cor-

rect the blurring problem and the reconstruction of the density, ρ(x, z), is obtained by

filtering the projections before back projection [Kak88]. Hence, the reconstruction pro-

cedure is called filtered back projection (FBP).

A filter and its frequency response are shown in Figure 6.5. Since the projection

data are measured with a sampling interval ofτ , the ideal filter (Figure 6.5(b)) has been

bandlimited to1/2τ (Nyquist frequency), and is set to zero outside the frequency inter-

val of (− 1
2τ

, 1
2τ

). The imaging system is then insensitive beyond the Nyquist frequency.

The filter itself (Figure 6.5(a)) is given by the function [Kak88]:

h(x) = h(nτ) =





1/4τ 2 n = 0

0 n even

−1/(nπτ)2 n odd

(6.8)

wheren are positive and negative integers.

A Ramp filter amplifies high frequency so it will tend to enhance high frequency
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(a) (b)

Figure 6.5: (a) Ramp filter and (b) its corresponded frequency response.

noise in real data. Applying a smoothing filter (usually the Shepp-Logan filter, or other

low-pass filters such as Hann, Hamming, Ram-Lak, Cosine or others) [Her79] sup-

presses the high spatial frequencies and tends to reduce noise. Figure 6.6 shows the

low-pass filters often used for the filtered back projection algorithm. In this thesis we

use the Shepp-Logan filter.

0

1

2

3

4

1 = Ramp
2 = Shepp−Logan
3 = Cosine
4 = Hamming

u

Figure 6.6: Schematic figure of filters that used for the filtered back projection algorithm.

6.2 Extended model for tomography

We consider an ideal transparent object with a one dimensional density variation to

represent one spatial frequency in the entire field of view, as shown in Figure 6.7. The
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x

z

xz

θ

r
r

beam direction

rx  = r o

Figure 6.7: Density variation of the object used in the tomography model.

density function is given by:

ρ(x) =





δ cos(ksx) for x2 + z2 ≤ r2
o

0 elsewhere
(6.9)

whereδ is the real part of the refractive index. We place the object in the original

coordinate systemx−z and rotate the direction of the x-ray beam parallel to the rotated

axiszr as shown in Figure 6.7. Using the rotation matrix in Equation6.2, we can write

the object density in rotated coordinates as:

ρθ(xr) = δ cos(ksxr cos θ − kszr sin θ) (6.10)

The projection of the object phase at an angleθ is then calculated according to:

φθ(xr) = −2π

λ

∫ √
r2
o−x2

r

−
√

r2
o−x2

r

ρθ(xr)dzr

= −2π

λ
δ

2

ks sin θ

[
cos(ksxr cos θ) sin(ks

√
r2
o − x2

r sin θ)
]

(6.11)

We then calculate the projection of the object phase using this equation for the whole

range of angles between0o to 180o. The angular step used will determine the resolu-

tion of the reconstructed image and the corresponding sampling requirements will be

discussed in Section 6.2.1. In the limitθ → 0o the above equation reduces to:

φ0(xr) = −2π

λ
2
√

r2
o − x2

r δ cos(ksxr) (6.12)
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The projections are then ”stacked” together into a sinogram. Each sinogram row cor-

responds to the x-ray projection at one angle as in Equation 6.11. Stacking together

each projection for all angle projections from0o to 180o, we get a complete a 2D sino-

gram. Figure 6.8 shows the sinogram of the object’s phase projection for every angle

Figure 6.8: Sinogram of the object’s phase projection

Figure 6.9: Sinogram after Shepp-Logan filtering.

between0o to 180o. After implementing a Shepp-Logan filter, the filtered sinogram is

shown in Figure 6.9. The tomographic reconstruction calculated from each sinogram is

a reconstructed 2D image which is a slice through the internal structure of the object.

The result of the back projection algorithm from the filteredsinogram is shown in Fig-

ure 6.10. This represents a reconstruction of the object density from projections of the
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object phase:

ρ(x) = FBP [φθ(xr)] (6.13)

where FBP is the filtered back projection operator. This corresponds to Equation 6.4

applied to the filtered sinogram. The reconstruction resultshows the object density of

Figure 6.10: Reconstruction of the object density.

δ cos(ksx) through the origin along thex-axis inside the circle with radiusro.

In classical tomography (absorption tomography), the contrast in the 2D projection

arises from the distribution of attenuation in the material. When the attenuation in the

material is weak, then phase contrast tomography can provide reconstructed images

with improved contrast [McM03a]. The experimental setup for phase contrast tomog-

raphy is similar to the absorption mode, only the detector islocated further away from

the object, as shown in Figure 6.11.

x−rays

z

detection plane 
for

phase contrast mode

detection plane 
for

absorption mode

sample

Figure 6.11: Absorption and phase contrast tomography setup.
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In an ideal coherent plane wave, the object density of a transparent sample is re-

constructed according to the flowchart shown in Figure 6.12.A transparent sample
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0
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propagate a distance z

giving exit wave phase

exit wave phases

Figure 6.12: Flowchart for tomography reconstruction of a transparent sample using a coherent

source.

influences only the phase of the beam on the objects. The phaseprojection of the sam-

ple for every rotation angle is written asφθ(xr). The wave function transmitted through

the sample is observed at the measurement plane placed at a distancez from the sample.

We denote the intensity at certain angleθ at the measurement plane asIz
θ (xr). These in-

tensities are inverted to retrieve the exit wave phase distribution. There are a number of

ways in which the phase may be retrieved as we discussed in Section 2.4.2. The meth-

ods chosen often depend on the imaging regime where the projection data have been

acquired. The phase at a certain angle,φ′
θ(xr), is then retrieved from intensity using the

phase retrieval algorithm. When the phase retrieval algorithms used here such as the

Transport of Intensity Equation [Nug96], single plane TIE based algorithm [Pag02] and

the single plane CTF based algorithm [Tur04a] are implemented correctly, the original

phase projection at every angle is retrieved. Having completed acquisition of the phase

data from0o to 180o, we can use the filtered back projection algorithm to reconstruct

the object density.

Using an extended and spatially incoherent source, the object density of a trans-
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parent sample is also reconstructed according to the flowchart shown in Figure 6.12.

However, in this case, the measured intensity at every projection angle can be treated
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Figure 6.13: Flowchart for tomography reconstruction of a transparent sample using an extended

and spatially incoherent source.

as a simple convolution result with the projection of the source intensity distribution

σθ(xr) (and including appropriate scaling if a point source is usedin projection to pro-

vide a magnification factor), as shown in Figure 6.13. We follow here the approach of

Paganin [[Pag99] pp. 196-198], where the retrieved phase can be treated as the con-

volution with the same source projection ofσθ(xr) under certain conditions. These

conditions will be met in the case of the single plane phase retrieval algorithms.

After correctly implementing the phase retrieval algorithm, the reconstructed den-

sity can be written as:

ρrec(x) = FBP [φθ(xr) ∗ σθ(xr)] (6.14)

According to Natterer [Nat86], the above equation can be written as:

ρrec(x) = FBP [φθ(xr)] ∗ σ(x) (6.15)

We know from Equation 6.13 that theFBP [φθ(xr)] inside the circle with radiusro

is δ cos(ksx). Taking into account the magnification factor due to point projection, the
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above equation can be rewritten as:

ρrec(x) =

∫
δ cos(ks

x′

M
).σ(

x − x′

M − 1
)dx′ (6.16)

In order to be explicit, a Gaussian distribution is used as a model for the finite source

distribution,σ(x), as shown in Equation 4.2. We can now rewrite the above equation

as:

ρrec(x) = δ cos(ks
x

M
)

[
exp(−1

2
(
M − 1

M
)2k2

sσ
2
s )

]
(6.17)

Applying the dimensionless variable from Equation 4.15 as the number of resolution

elements contained in the source, we get:

ρrec(x) = δ cos(ks
x

M
)

[
exp(−1

2
(
M − 1

M
)2ξ2)

]
(6.18)

We introduce the definition of the quality of the tomographicreconstruction as a divi-

sion of the reconstructed density by the real density as:

Q(ξ, M) =
ρrec(x)

ρ(x)
(6.19)

Then we can see that the quality function for tomographic reconstructions for a trans-

parent sample as a function of object frequency,ξ, and magnification,M , is:

Q(ξ, M) = exp(−1

2
(
M − 1

M
)2ξ2) (6.20)

Figure 6.14 shows this quality function for a transparent object. At high magnification,

the exponential term of Equation 6.20 will be independent ofthe magnification. The

quality function describes then the effect of source blurring and shows the reduction

of the quality at higher spatial frequencies. However, forM → 1 the quality will be

perfect for the whole range frequencies. Under this condition significant quality can

be observed for structures that are smaller than the source size. Of course, as usual,

in such cases detector resolution will become important andin practice will limit the

observation of high spatial frequencies.

A similar derivation will now be described for a two dimensional density variation,

as shown in Figure 6.15, with the density function given by:

ρ(x, z) =





δ cos(kxx)cos(kzz) for x2 + z2 ≤ r2

o

0 elsewhere
(6.21)
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Figure 6.14: The quality function for tomographic reconstruction as a function of dimensionless

spatial frequency,ξ, and Magnification, M. The color map is [white = 1, black = 0].

where(kx, kz) is the object variation inx andz direction respectively. Most real objects,

have a two dimensional density variation rather than one dimensional density variation.

For the two dimensional density variation case, Equation 6.15 will have the form:

ρrec(x, z) = FBP [φθ(xr)] ∗ σ(x, z) (6.22)

Evaluating this equation as before and assuming that the source distribution is separable

in x andz directions, we have:

ρrec(x, z) =

∫
δ cos(kx

x′

M
) cos(kz

z′

M
).σ(

x − x′

M − 1
).σ(

z − z′

M − 1
)dx′dz′ (6.23)

and when the Gaussian source distribution is included:

ρrec(x, z) = δ cos(kx
x

M
) cos(kz

z

M
)

[
exp

(
−1

2
(
M − 1

M
)2(ξ2

x + ξ2
z)

)]

(6.24)

where(ξx, ξz) is the dimensionless characteristic spatial frequency in thex andz direc-

tion respectively. The quality function is then:

Qround(ξ, M) = exp

(
−1

2
(
M − 1

M
)2(ξ2

x + ξ2
z)

)
(6.25)

In the case whenkx = kz the quality function become:

Qround(ξ, M) = exp(−(
M − 1

M
)2ξ2) (6.26)
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Figure 6.15: Two dimensional density variation in an object.

Note that reduction of the quality function for a 2D structure due to an extended source

decreases more quickly than for the 1D case. Consequently, the effect for high spatial

frequencies will be larger.

6.2.1 Sampling requirements

In a tomography experiment, a general rule for the number of projections,np, required

to give reconstruction resolution equal to the detector pixel size is aboutπ/2 times

the number of pixels in the detector [Clo99b]. The choice ofnp determines the angle

between projections and therefore the spatial resolution of the reconstructed image, as

shown in Figure 6.16. If we acquire images over a half turn ofπ, then the angleθ

between each projections is:

θ =
π

np
=

π
π
2
Nd

=
2

Nd
(6.27)

whereNd is the number of pixels in the detector. The resolution of thereconstructions

is therefore given by:

∆rec =
1

2
Nd∆p. sin θ (6.28)

where∆p is the detector pixel size. Consequently, in the case when the number of

projections,np is (π/2).Nd, the resolution of the reconstructed image will be as good as

the detector pixel size itself. When the number of projections is less than(π/2).Nd, the
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Figure 6.16: Relation between the number of projections with the spatial resolution of the re-

construction.

resolution element in the reconstruction will be larger than the detector pixel size. When

a large number of projections is to be performed, there is also the practical limitation

of the available hardware for the machine used for the reconstruction, for example the

limits of the memory in the hardware.

Poor pixel resolution can be obviated to some degree by usingpoint projection mag-

nification. This was demonstrated by McMahon et al [McM03a] for imaging a9µm

AFM tip with a 900nm bump. A spatial resolution of better than900nm was achieved

using a focal beam waist of60nm from a zone plate and magnification of around 160

times, while the nominal detector pixel size was24.5µm . In these cases though the

analysis of Chapter 4 shows that the source to sample distance must become small.

For example McMahon et al. used a distance of6mm for source sample distance and

971mm for source detector distance.

6.3 Numerical simulation

To evaluate the theory, we modeled a numerical simulation ofa phase object. Figure

6.17 shows a slice of round samples with various spatial frequencies. The periods of

the samples were5, 10, 17 and38µm in an array. Each sample was characterized by

the real refractive index value ofδ = 2.10−6. First, the functionφθ was computed by

making a projection for every angleθ at an angular step size of0.3o. This produces 600
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projections over a half turn of180o. Then, the phase contrast data were computed by ap-

plying the Kirchhoff propagator algorithm of Equation 2.26modified for the spherical

wave illumination case at a propagation distance ofz1 = 0.1m, z2 = 1.7m with a mag-

nification factor of 18 times. We assumed in this example thatthe sample is transparent

Figure 6.17: Object density function used in the numerical simulation, with period of5, 10, 17

and38µm.

(µ = 0). The intensity in the measurement plane for every angle wasconvolved with an

extended source with FWHM of5µm. The x-ray wavelength wasλ = 1Å, whereas the

detector pixel size was∆p = 1µm and the number of pixels were 500 x 500.

Figure 6.18: Sinogram of the retrieved phase (φ′
θ ∗ σθ) for every projection.

Then, we performed a phase retrieval algorithm for each intensity measurement. In



142 CHAPTER 6. TOMOGRAPHY

this example we used the single plane TIE based phase retrieval algorithm of Equation

2.61. The retrieved phase for every projection angle (φ′
θ ∗ σθ) is shown in Figure 6.18

in the form of a sinogram.

The filtered back projection algorithm Equation 6.13 was applied to this sinogram

Figure 6.19: The reconstruction of the object density.

Figure 6.20: Object density profiles along the x-axis direction through the center of the object

array. The real object (dot line) and reconstructed object (solid line) shows the same periodicity.

to reconstruct the object density. The reconstruction result is shown in Figure 6.19.

To make a more quantitative comparison, we take the profiles of the object density

and the reconstructed object along the line going through the center of the array in the

x-axis direction. The profiles in Figure 6.20 show that for low spatial frequencies
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Figure 6.21: Theoretical quality function is plotted against the simulation results, withz1 =

0.1m, z2 = 1.7m.

Figure 6.22: Theoretical quality function is plotted against the simulation results, withz1 =

0.1m, z2 = 0.02m.
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the object density is well reconstructed with the same periodicity as the input. For

higher spatial frequencies the quality of the reconstruction reduces as expected. It is also

noticeable that the edges roll off due to the loss of high spatial frequency information.

Tomographic artefacts due to inadequate angular sampling and the effect of using a

Shepp-Logan filter instead of the ideal Ramp filter will also produce similar round off

in the reconstructed features. It would be a worthwhile areaof further investigation to

disentangle these effects.

We calculated the quality based on the comparison of the reconstructed with the real

object density as shown in Equation 6.19. The plot in Figure 6.21 shows the quality

function for the reconstruction from Equation 6.26 againstthe simulation result for

the various object frequencies. We see that the source size of 5µm FWHM becomes

a limiting factor for the quality. In this case, an object spatial frequency of5µm is

reconstructed poorly.

Figure 6.22 shows another simulation result for distances of z1 = 0.1m, z2 =

0.02m, with M = 1.2. The same variation in object periods of38, 17, 10, 5µm was

used. The figure shows that high spatial frequencies are reconstructed with better qual-

ity. In this case a theoretical resolution of around1.6µm based on Equation 6.28 will be

the limit for a viable reconstruction. At this point the limitation is due to the sampling

used as given by Equation 6.28.

Figure 6.23: Kapton ball sample with voids in one slice.

When quantitative phase retrieval is not applied it has beena common practice

to perform the tomographic reconstruction directly from the intensity measurement
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[Clo97a; May03]. We applied this technique to a simulation of kapton balls with voids

in one slice of the sample, as shown in Figure 6.23. The resulting reconstruction can be

seen in Figure 6.24(a). The reconstruction shows a qualitative resemblance to the real

object but artefacts can clearly be seen. These are due to thestrong edge enhancement

seen in the phase contrast images. The effect is similar to what would be observed for a

poor signal to noise data set resulting in something that looks like a noisy reconstruction.

The result does however show that, where only identificationof strong boundary-like

features is required, the technique may be used as a qualitative tool. Therefore, Cloetens

et al [Clo97a] used this kind of tomographic reconstructiontechnique for detecting mi-

crostructure damage such as cracks in materials.

Figure 6.24: Tomography reconstruction (a) from intensitymeasurement directly (b) after ap-

plying phase retrieval.

6.3.1 Effect of noise

As we discussed in Subsection 4.4.1, phase retrieval techniques are more sensitive to

noise for small propagation distances. Therefore increasing z2 will reduce the effect of

noise. The same effect applies for phase tomography reconstructions since we apply a

phase retrieval technique on the way to reconstructing the object density. Figures 6.25

and 6.26 show the reconstruction of the object density in thepresence of8% noise in

the detector plane for the object shown in Figure 6.17. The simulation results were

obtained with distancesz1 = 0.1m, z2 = 0.02m with M = 1.2 and forz1 = 0.1m,
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Figure 6.25: Tomography reconstruction for small propagation distance data for the object in

Figure 6.17 in the presence of8% noise with the corresponding plot along one of the lines of

the objects.

z2 = 1.7m with M = 18 respectively. Noise was added in the raw intensity data in the

same manner as described in Subsection 4.4.1. We see that theresult is more sensitive

to noise for the small propagation distance.

Figure 6.26: Tomography reconstruction for large propagation distance data for the object in

Figure 6.17 in the presence of8% noise with the corresponding plot along one of the lines of

the objects.

However, from Figures 6.21 and 6.22, we know that high spatial frequencies are

reconstructed better for small propagation distances. Therefore to reduce the problem

of noise and to reconstruct better for high spatial frequencies, we apply the objective

filtering strategy of Equations 4.22 and 4.23 to the phase images before reconstruction.
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Figure 6.27: Tomography reconstruction for the object in Figure 6.17 after applying an objective

filtering strategy in the presence of8% noise with the corresponding plot along one of the lines

of the objects.

Quantitative improvement of the reconstruction when considering the combined images

is apparent in Figure 6.27.

6.4 Experiment results

In this section we present some preliminary experiment results1. These make use of

access to a tomography facility in experiments that were performed at beam line 2BM

(bending magnet) at the Advanced Photon Source (APS) in Argonne National Labo-

ratory. This facility does not employ focusing optics so allconfigurations are for the

caseM ≈ 1. Nevertheless they allow us to test our model for different object sizes.

We describe below the experimental setup and then the results of three experimental

arrangements. A monochromatic beam with energy of 7, 10 and 15 keV was used.

The samples were polystyrene micro-spheres of different diameters. The samples were

mounted on a precision stage with rotation about the vertical axis. The x-ray beam that

passed through samples was propagated some distance downstream to a detector. The

detector is coupled via an objective lens with an approximately 300µm thick cadmium

tungstate (CdWO4) scintillator screen, giving an effective pixel size that depends on the

objective used. In the experiment described here a10× objective was used in such a

1I would like to acknowledge Dr. Andrew G. Peele who acquired this tomography data.
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way as to give an effective pixel size of0.735 x 0.735 µm2.

Each projection was taken in0.25o steps, for a half turn between0o to 180o. Each

projection intensity image was corrected for dark current and non uniform illumination

of the intensity as described in Equation 3.3. A completed tomography data set was

collected in tens of minutes because of the combination of the high brilliance x-ray

source and the fast detector readout systems. Preprocessing and phase reconstruction

calculations were performed offline on a PC and we reconstruct only a region of interest

in the data sets.

Figure 6.28: Phase contrast image of one projection of polystyrene balls with20µm diameter.

Figure 6.28 shows the phase contrast image for one projection of polystyrene balls

with 20µm diameter in a small region of 400x200 pixels after applying the intensity

correction. An energy of 10 keV was used with a propagation distance of30mm down-

stream to the detector. The image shows that the micro-spheres are stacked together

and that edge enhancement is clearly visible.

Figure 6.29(a) shows a 3D visualization of the 200x200x200 voxels2 for the to-

mographic reconstruction based on the measured projections for the20µm diameter

polystyrene balls. Figure 6.29(b) shows one slice of 650x650 pixels through the re-

constructed volume. This reconstruction was made using theraw phase contrast inten-

sity images without any post-processing or phase retrieval. The reconstructed section

clearly shows the main features of the object. It also shows features such as bright

fringes around the edges of the object arising from the phasecontrast features of the

2Voxel is the three dimensional unit of pixel.
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(a) (b)

Figure 6.29: A surface rendering of a qualitative 3D reconstruction of the20µm diameter

polystyrene balls with the corresponding view of a single slice.

(a) (b)

Figure 6.30: A surface rendering of a quantitative 3D reconstruction of the20µm diameter

polystyrene balls with the corresponding view of a single slice.
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raw data. As discussed previously, the phase contrast imageis edge enhanced. This can

be confusing in a 3D visualization as it is hard to determine the true boundary of the

object.

Applying the single plane TIE based phase retrieval of Equation 2.61 for each in-

tensity projection and then implementing the filtered back projection algorithm, we get

a quantitativetomographic reconstruction of the object, as shown in Figure 6.30. The

confusion as to the edges of the overlapping object in 3D as seen in Figure 6.29 is now

improved and the individual balls can be more clearly identified. The individual spheres

(in white color) can now be resolved.

Figure 6.31: The density function of a reconstruction in oneslice for the object in Figure 6.30(b),

with a corresponding profile along x-axis, at z = 275.

Figure 6.31 shows the density function from the reconstruction in the slice shown

in Figure 6.30(b) and a corresponding profile parallel to thex-axis at a constant z =

275. Most of the reconstructed spheres are close to the actual value of the refractive

index (within 15%). At 10 keV, polystyrene(C9H12) with the density1.05gram/cm3

has the refractive index value3 of δ = 2.3980x10−6 andβ = 2.0869x10−9. The correct

value is revealed in the area around the center of the spheres. The edges roll off partly

due to the shape of the balls so that not all voxels are ”filled”with polystyrene and

partly due to the blurring caused by the loss of high spatial frequency information and

the effect of the Shepp-Logan filter as mentioned previously. It is also worth pointing

3The refractive index of polystyrene (C9H12) is retrieved from http://www-
cxro.lbl.gov/opticalconstants/.



6.4. EXPERIMENT RESULTS 151

(a) (b)

Figure 6.32: (a) A quantitative reconstruction in one sliceof the20µm diameter balls with an

x-ray energy of 7 keV, (b) a corresponding profile at z = 389.

out that the geometric details of the object are correctly reconstructed. In the plot of

Figure 6.31(b) the first peak represents one sphere. The FWHMof that peak consists

of 28 pixels which corresponds to21µm (since the detector has an effective pixel size

of 0.735µm). This is in a good agreement with the by the manufacturer’s specified

diameter of20 ± 3.2µm. The dimension can be measured in the orthogonal direction

also and again is in agreement with the specification.

Another data set was acquired at an energy of 7 keV for the20µm spheres placed at a

distance of 30 mm from the detector. At this energy, polystyrene has the refractive index

components ofδ = 4.9018x10−6 andβ = 8.9087x10−9. A quantitative reconstruction

in one slice with a corresponding profile are shown in Figure 6.32. The reconstruction

shows the density function within 17% of the actual value.

Polystyrene balls with a diameter of75µm were used in the last data set which was

acquired at an energy of 15 keV, and a propagation distance of922 mm. At this energy,

δ = 1.0647x10−6 andβ = 4.5287x10−10. The reconstruction result is shown in Figure

6.33 with the density function within 15% of the actual value.

The characteristic size of the source (σs) was102µm horizontally and35.1µm ver-

tically. The source sample distance isz1 = 50m. If we placed the detector at a distance

z2 = 0.03m or z2 = 0.922m, we will get image with magnificationM ≈ 1. Figure

6.34 shows the the theoretical quality function plotted with the quality of the recon-
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(a) (b)

Figure 6.33: (a) A quantitative reconstruction in one sliceof the75µm diameter balls with an

x-ray energy of 15 keV, (b) the corresponding profile at z = 410.

struction results for the three of the polystyrene balls. Note that the quality function is

independent of the energy used.

Figure 6.34: Theoretical quality function plotted againstthe experimental result for the20 and

75µm spheres withM ≈ 1.

We see from Figure 6.34 that the experimental results agree well with the theo-

retical predictions. While the agreement of the recovered phase with the theoretical

predictions are not spectacular, we now know that for these object sizes the potential

quality of the reconstruction is high. This would then give us confidence to apply the

standard procedures to improve the accuracy of the phase retrieval. These procedures

might include taking multiple data sets to improve signal tonoise and applying our ob-
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jective filtering criteria of Equation 4.22 and 4.23 to improve the reconstruction over

a large range of spatial frequencies. This technique has thebenefit of also introducing

redundant data sets thus further improving signal to noise and hence the possible ac-

curacy of the phase retrieval. This type of improvement in the data is similar to that

demonstrated by Cloetens et al [Clo99a] in their ”holotomography” results. Applying

these methods is however beyond the scope of this thesis and we leave it as an avenue

for further exploration.

In future work, an experiment using spherical wave illumination could also be per-

formed to test the theory. This could be done using a micro computed tomography

system from a lab based x-ray source or in a synchrotron source using a zone plate.
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Chapter 7

Conclusion

7.1 Overview

Phase contrast imaging is a rapidly evolving field with many new developments based

on its ability to image the complex refractive index of materials. We have developed an

image formalism for phase contrast image formation using the propagation based phase

contrast method. The formalism explicitly incorporated a partially coherent beam,

which for x-ray sources can be closely related to source sizeand energy bandwidth.

The optimum condition for image quality and its sensitivityto different spatial frequen-

cies is described in the formalism.

This model is suitable for imaging experiment performed with a micro focus x-ray

tube. Since x-ray tubes are compact and readily available, we believe that this study has

great potential for applications in phase contrast imaging. A benefit of the model is that

we can tailor an experiment to be sensitive to the desired feature sizes in the object thus

maximizing the visibility of the image. An extended model has been also developed

for 3D tomography phase contrast. This will benefit phase contrast radiography and

tomography for light materials using hard x-rays.

155
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7.2 Summary of results

In Chapter 2, the existing phase contrast imaging techniques, as a forward problem,

were described including the free space propagation method. This imaging model used

no lenses to form images and so is useful at x-ray wavelengths. The optimum contrast

for a particular object size can be achieved at a particular propagation distance. Images

obtained in the edge detection regime can be interpreted directly: this allows us to make

use of Fresnel imaging as a direct imaging technique for hardx-rays. Different meth-

ods of phase retrieval for quantitatively extracting the phase were also described. The

method chosen often depends on the imaging regime where the data has been acquired.

The experimental arrangement and installation that were used for the experimental

work in this study, were described in Chapter 3. A micro focusx-ray source was used

to do the experimental work in radiography for transparent and for complex objects.

A synchrotron experiment was used to acquire the tomographydata set. The detector

resolution plays a major role in the case of plane wave illumination because it limits the

spatial resolution in the recorded image and therefore alsolimits the resolution of the

reconstruction image in the case of 3D phase contrast tomography.

An analytic expression for contrast using the imaging modelwas derived in Chapter

4 for pure phase samples. The image formation started by assuming that the sample

is in the differential regime of propagation which limits the applicability primarily to

very short wavelength radiation over short propagation distance. In this case the image

magnification can still be achieved by using a spherical waveillumination that projects

an enlarged diffraction pattern onto the detector. We limited our case to a small prop-

agation distance in which the Transport of Intensity Equation is valid. Information

related to the object, such as the image visibility, is the main purpose for calculating

the image quality incorporating an extended source size. The model was then tested ex-

perimentally using a micro focus x-ray laboratory source, and the experimental results

confirmed the validity of the theory. The model is then applied to develop methods for

dealing with improving image quality. A description of the transfer of spatial frequency

information (objective filtering) was used in Chapter 4 to propose a rational method for

combining images obtained over a range of propagation distances in order to recover
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a single high quality image. This objective filtering strategy is successfully applied at

intensity data, phase recovery and experimental neutron data. In phase recovery data,

this strategy was used in combining many retrieved phase images in the presence of

noise. Phase images for short propagation distance are perfect for a wide range fre-

quency features but are more sensitive to noise. Increases in propagation distance will

reduce the effect of noise but the influence of source blurring becomes more apparent.

A combination of both images using our objective filtering strategy resulted in one high

quality image.

The imaging model was then extended to complex objects in Chapter 5. This study

demonstrated the contribution of absorption and phase to the image contrast. Our for-

malism also explicitly included the role of a partially coherent source, which is closely

related to source size and source spectral distribution. The effect of the source size in

the case of high magnification image can be seen as a blurring of the image that limits

the spatial resolution of the system. With the magnificationclose to unity, the effect

of source blurring is negligible. The effect of the beam spectrum can be separated into

two cases. Near an absorption edge, the phase contrast imageshows some blurring and

some shifting in the spatial frequencies. Far from an absorption edge, phase contrast

using a polychromatic source showed the same result as for a monochromatic source

when an equivalent energy calculated from the spectrally weighted sum was used. The

experimental tests of the model using a micro focus x-ray source were found to be in

excellent agreement with the theory. Application of the model to imaging micro cracks

and corrosion in aluminium sheets proved that this analytical form of imaging is useful

for selecting the optimum parameters for a given radiography experiment. The formal-

ism was applied for an alternative method of source size measurement. In Chapter 5,

we discussed the result for the short propagation distance region using the transport

of intensity formalism, and for larger propagation distances using the contrast transfer

function. It can be seen that a correct application of the twotechniques has the potential

to cover a broad range of practical application in x-ray radiography. Using the con-

trast transfer function, the variation in propagation distances were used to study Talbot

effects for periodic objects.



158 CHAPTER 7. CONCLUSION

Finally, an extended formalism for 3D tomography phase contrast for pure phase

samples was derived in Chapter 6 which quantified a reconstruction quality factor as

a function of object frequencies. The quantitative 3D reconstruction when phase re-

trieval was applied during the reconstruction steps, brings out the mapping of density

function of an object. However, the common practice of 3D reconstruction directly

from intensity data, showed only qualitatively important information about an object.

A quantitative improvement in 3D reconstruction was demonstrated in the presence of

noise by applying a frequency combination strategy for different propagation distances

to the retrieved phase before applying the filtered back projection algorithm. The three

dimensional distribution of the density function of polystyrene micro spheres was deter-

mined experimentally. The results show the agreement with the theoretical predictions.

7.3 Suggestions for further research

Chapter 6 described an extended formalism for 3D tomographic phase contrast for pure

phase samples. It would be interesting to extend the formalism for complex objects

and thus show the ability to separate between absorption andphase contributions in

the image reconstruction. Further work could also include taking multiple data sets to

improve signal to noise and to extend the frequency responseof the reconstructed data

set. Experimental work using spherical wave illumination would also be worthwhile to

evaluate the theory for a broader region of spatial frequencies for the object. Performing

image deconvolution using the known source properties is also worth exploring for the

purpose of increasing the high spatial frequency reconstructions.



Appendix A

Publications

I have contributed the following refereed publications during the course of my PhD

candidature, in addition to a number of conference presentations.

• B.D. Arhatari, A.P. Mancuso, A.G. Peele, K.A. Nugent,Phase contrast radiog-

raphy: Image modelling and optimization, Review of Scientific Instruments, 75

(12), 5271-6, (2004).

• B.D. Arhatari, K.A. Nugent, A.G. Peele, J. Thornton,Phase contrast radiography

II: Imaging of complex object, Review of Scientific Instruments, 76 (1), 1137041-

6, (2005).

• J. Thornton, B.D. Arhatari, A.G. Peele, K.A. Nugent,Optimizing visibility for

the neutron radiography of titanium and nickel gas turbine components, Elsevier

Science (accepted).

• A.G. Peele, H.M. Quiney, B.B. Dhal, A.P. Mancuso, B.D. Arhatari, K.A. Nugent

New Opportunities in X-ray Tomography, Elsevier Science (accepted).

• B.D.Arhatari, K.A. Nugent, A.G. Peele,Phase Contrast Imaging with a micro-

focus x-ray source, Oral presentation at 8th International Conference on Optics

within Life Sciences, Nov 2004, Melbourne, Victoria.

• B.D.Arhatari, K.A. Nugent, A.G. Peele,Phase Contrast Imaging with a micro-

focus source, Poster presentation at ACOLS 03 (Australasian conferenceon Op-

tics, Lasers and Spectroscopy), Dec 2003, The University ofMelbourne, Victoria.

159



160 APPENDIX A. PUBLICATIONS



Bibliography

[Abo00] A.O. Aboyan. Investigation of deformation fields inion-implanted

analyzing crystal of x-ray interferometer.Journal of Contemporary

Physics, 35(4):38–44, 2000.

[All00] B. E. Allman, P. J. McMahon, K. A. Nugent, D. Paganin,D. L. Ja-

cobson, and S. A. Arif, M. Werner. Phase radiography with neutrons.

Nature (London), 408:158–9, 2000.

[Amp98] MCA8000 and XR-100CR User’s Manual. Amptek inc. website:

http://www.amptek.com.

[And72] M. Ando and S. Hosoya. An attempt at x-ray phase-contrast mi-

croscopy.Proc. 6th Intern. Conf. on X-ray Optics and Microanalysis,

pages 63–68, 1972.

[Arh04] B.D. Arhatari, A.P. Mancuso, A.G. Peele, and K. A. Nugent. Phase

contrast radiography: Image modelling and optimization.Review of

Scientific Instruments, 75(12):5271–6, 2004.

[Arh05] B.D. Arhatari, K. A. Nugent, A.G. Peele, and J. Thornton. Phase con-

trast radiography II: Imaging of complex objects.Review of Scientific

Instruments, 76(1):1137041–6, 2005.

[Baj00] S. Bajt, A. Barty, K.A. Nugent, M. McCartney, M. Wall, and D. Pa-

ganin. Quantitative phase-sensitive imaging in a transmission electron

microscope.Ultramicroscopy, 83(1-2):67–73, 2000.

[Ban91] P.P. Banerjee and T.C. Poon.Principles of Applied Optics. Aksen

Associates Incorporated Publishers, 1991. ISBN: 0-256-08860-8.

[Bar00] A. Barty, K.A. Nugent, A. Roberts, and D Paganin. Quantitative phase

tomography.Optics Communications, 175:329–36, 2000.

161



162 BIBLIOGRAPHY

[Bar81] H.H. Barrett and W. Swindell.Radiological imaging (The theory of

image formation, detection, and processing), vol. 2. Academic press

inc., 1981. ISBN 0-12-079602-3 (vol. 2).

[Bar98] A. Barty, K.A. Nugent, D. Paganin, and A. Roberts. Quantitative

optical phase microscopy.Optics Letters, 23(11):1–3, 1998.

[Bar99] A. Barty. Quantitative Phase-Amplitude Microscopy. PhD thesis,

School of Physics, University of Melbourne, 1999.

[Bon00] U. Bonse, F. Beckmann, and T. Biermann. X-ray microtomography

( mu CT) using interferometric phase contrast.AIP Conference Pro-

ceedings, (507):69–75, 2000.

[Bon65] U. Bonse and M. Hart. An x-ray interferometer.Applied Physics

Letters, 6(8):155–6, 1965.

[Bor99] M. Born and E. Wolf. Principles of Optics. Cambridge university

press, 7th edition, 1999.

[Bro99] A.V. Bronnikov. Reconstruction formulas in phase-contrast tomogra-

phy. Optics Communications, 171:239–44, 1999.

[Bur84] P. Burstein, P. J. Bjorkholm, R. C. Chase, and F. H. Seguin. The

largest and smallest x-ray computed tomography systems.Nuclear

Instruments and Methods in Physics Research, 221(1):207–12, 1984.

[Clo01] P. Cloetens, E. Boller, W. Ludwig, J. Baruchel, and M. Schlenker. Ab-

sorption and phase imaging with synchrotron radiation.Europhysics

News, 32(2), 2001.

[Clo96] P. Cloetens, R. Barrett, J. Baruchel, J.P. Guigay, and M. Schlenker.

Phase objects in synchrotron radiation hard x-ray imaging.Journal of

Physics D-Applied Physics, 29:133–46, 1996.

[Clo97a] P. Cloetens, M. Pateyron-Salome, J. Y. Buffiere, G.Peix, F. Baruchel,

J. Peyrin, and M. Schlenker. Observation of microstructureand dam-

age in materials by phase sensitive radiography and tomography.Jour-

nal of Applied Physics, 81(9):5878–86, 1997.

[Clo97b] P. Cloetens, J.P. Guigay, C. De Martino, and J. Baruchel. Fractional

talbot imaging of phase gratings with hard x-ray.Optics Letters,

22(14):1059–61, 1997.



BIBLIOGRAPHY 163

[Clo99a] P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dijck, J. Van Landuijt,

JP. Guigay, and M. Schlenker. Holotomography: Quantitative phase

tomography with micrometer resolution using hard synchrotron radi-

ation x-rays.Applied Physics Letters, 75:2912–4, 1999.

[Clo99b] P. Cloetens.Contribution to phase contrast imaging, reconstruction

and tomography with hard synchrotron radiation. PhD thesis, Facul-

teit Toegepaste Wetenschappen, Vrije Universiteit Brussel, 1999.

[Coe92] W. Coene and G. Janssen. Phase retrieval through focus variation for

ultra resolution in field emission transmission electron microscopy.

Physical Review Letters, 69(26):3743–6, 1992.

[Cow95] J.M. Cowley. Diffraction Physics. North-Holland, Amsterdam, 3rd

revised edition, 1995.

[Dav95] T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W.

Wilkins. Phase-contrast imaging of weakly absorbing materials us-

ing hard x-rays.Nature, 373(6515):595–8, 1995.

[Fie72] J.R. Fiebiger and R.S. Muller. Pair production energies in silicon and

germanium bombarded with low-energy electrons.Journal of Applied

Physics, 43:3202, 1972.

[Fie82] J.R. Fienup. Phase retrieval algorithms: a comparison. Applied Op-

tics, 21(15):2758–69, 1982.

[Fod03] I.M. Fodchuk and N. Raransky. Moire images simulation of strains

in x-ray interferometry. Journal of Physics D (Applied Physics),

36(10A):A55–9, 2003.

[Gao95] D. Gao, T.J. Davis, and S. W. Wilkins. X-ray phase contrast imaging

study of voids and fibres in a polymer matrix.Australian Journal of

Physics, 48:103–11, 1995.

[Gao98] D. Gao, A. Pogany, A. W. Stevenson, and S. W. Wilkins.

Phase-contrast radiography.Imaging and Therapeutic Technology,

18(5):1257–67, 1998.

[Gas99] J. Gastaldi, L. Mancini, E. Reinier, P. Cloetens, W.Ludwig, C. Janot,

J. Baruchel, J. Hartwig, and M. Schlenker. The interest of x-ray imag-

ing for the study of defects in real quasicrystals.Journal of Physics

D-Applied Physics, 32(10A):A152–9, 1999.



164 BIBLIOGRAPHY

[Ger72] R.W. Gerchberg and W.O. Saxton. A practical algorithm for the deter-

mination of phase from image and diffraction plane pictures. Optik,

35(2):237–46, 1972.

[Gui77] J.-P. Guigay. Fourier transform analysis of fresnel diffraction patterns

and in-line holograms.Optik, 49:121–5, 1977.

[Gur00] T. E. Gureyev, A. W. Stevenson, D. Paganin, S. C. Mayo, A. Pogany,

D. Gao, and S. W. Wilkins. Quantitative methods in phase-contrast

x-ray imaging.Journal of Digital Imaging, 13(2):121–6, 2000.

[Gur01] T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, andA. W. Steven-

son. Quantitative in-line phase-contrast imaging with multienergy x

rays.Physical Review Letters, 86(25):5827–30, 2001.

[Gur03] T. E. Gureyev. Composite techniques for phase retrieval in the fresnel

region.Optics Communications, 220:49–58, 2003.

[Gur04] T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins. Linear

algorithms for phase retrieval in the fresnel region.Optics Communi-

cations, 231:53–70, 2004.

[Gur95] T. E. Gureyev, A. Roberts, and K. A. Nugent. Partially coher-

ent fields, the transport-of-intensity equation, and phaseuniqueness.

Journal of the Optical Society of America A-Optics & Image Science,

12(5):1942–6, 1995.

[Gur98] T. E. Gureyev and S. W. Wilkins. X-ray phase imaging with a point

source.Journal of the Optical Society of America A-Optics & Image

Science, 15(3):579–85, 1998.

[Hal79] R. Halmshaw. Defect size measurement by radiography. British Jour-

nal of Non-Destructive Testing, 21(5):245–8, 1979.

[Hec97] E. Hecht.Optics. Addison-Wesley Publishing Co. Inc., 2nd edition,

1987.

[Her79] G.T. Herman.Image reconstruction from projections. Springer-Verlag

Berlin Heidelberg New York, 1979.

[Hwu02] Y. Hwu, W. Tsai, A. Groso, G Margaritondo, and J.H. Je. Coherence-

enhanced synchrotron radiology: simple theory and practical applica-

tions. Journal of Physics D: Applied Physics, 35:R105–20, 2002.



BIBLIOGRAPHY 165

[Ing95] V. N. Ingal and E. A. Beliaevskaya. X-ray plane-wavetopography ob-

servation of the phase contrast from a non-crystalline object. Journal

of Physics D: Applied Physics, 28(11):2314–17, 1995.

[Ing98] V. N. Ingal, E. A. Beliaevskaya, A. P. Brianskaya, and R. D.

Merkurieva. Phase mammography - a new technique for breast in-

vestigation.Physics in Medicine and Biology, 43(9):2555–67, 1998.

[Jon04] P. Jonas and Louis A.K. Phase contrast tomography using holographic

measurements.Inverse Problems, 20:75–102, 2004.

[Kak88] A.C. Kak and M. Slaney.Principles of Computerized Tomographic

Imaging. IEEE Press, New York, 1988. ISBN 0-87942-198-3.

[Lum90] D.H. Lumb. Calibration and x-ray spectroscopy withsilicon CCDs.

Nuclear Instruments and Methods in Physiscs Research, A290:559–

64, 1990.

[Mad89] J.U. Madsen. Focal spot size measurements for microfocus x-ray sets.

NDT International, 22(5):292–6, 1989.

[Maj96] B. Maj, P.H.A. Mutsaers, E. Rokita, and M. J. A. de Voigt. Determi-

nation of the microbeam profile using deconvolution procedures.Nu-

clear Instruments and Methods in Physics Research Section B: Beam

Interactions with Materials and Atoms, 113(1-4).

[Man95] L. Mandel and E. Wolf. Optical Coherence and Quantum Optics.

Cambridge University Press, 1995. ISBN 0 521 41711 2.

[May02] S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D.Gao, T. E.

Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson.

Quantitative x-ray projection microscopy: phase-contrast and multi-

spectral imaging.Journal of Microscopy, 207:79–96, 2002.

[May03] S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D.Paganin,

A. Pogany, A. W. Stevenson, and S. W. Wilkins. X-ray phase-contrast

microscopy and microtomography.Optics Express, 11(19):2289–302,

2003.

[McM01] P. J. McMahon, B. E. Allman, K. A. Nugent, D. L. Jacobson, M. Arif,

and S. A. Werner. Contrast mechanisms for neutron radiography. Ap-

plied Physics Letters, 78(7):1011–13, 2001.



166 BIBLIOGRAPHY

[McM03a] P. J. McMahon, A. G. Peele, D. Paterson, J.J.A. Lin,T.H.K. Irving,

I. McNulty, and K. A. Nugent. Quantitative x-ray phase tomography

with sub-micron resolution.Optics Communications, 217:53–8, 2003.

[McM03b] P. J. McMahon, A. G. Peele, D. Paterson, K. A. Nugent, A. Snigirev,

T. Weitkamp, and C. Rau. X-ray tomographic imaging of the complex

refractive index.Applied Physics Letters, 83(7):1480–2, 2001.

[McM03c] P. J. McMahon, B.E. Allman, D.L. Jacobson, M Arif, S.A. Werner,

and K. A. Nugent. Quantitative phase radiography with polychromatic

neutrons.Physical Review Letters, 91(14):1455021–4, 2003.

[Mom03] A. Momose. Phase-sensitive imaging and phase tomography using

x-ray interferometers.Optics Express, 11(19):1303–14, 2003.

[Mom95] A. Momose, T. Takeda, and Y. Itai. Phase-contrast x-ray computed to-

mography for observing biological specimens and organic materials.

Review of Scientific Instruments, 66(2):1434–6, 1995.

[Nat86] F. Natterer.The mathematics of computerized tomography. John Wi-

ley & Sons Ltd and B G Teubner, Stuttgart, 1986. ISBN: 0 471 90959

9.

[Nug03] K. A. Nugent, A.G. Peele, H.N. Chapman, and A.P. Mancuso. Unique

phase recovery for nonperiodic objects.Physical review Letters,

91(20):2039021–4, 2003.

[Nug91] K. A. Nugent. Partially coherent diffraction patterns and coher-

ence measurement.Journal of the Optical Society of America A,

8(10):1574–9, 1991.

[Nug96] K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and

Z. Barnea. Quantitative phase imaging using hard x rays.Physical

Review Letters, 77(14):2961–4, 1996.

[Pag01] D. Paganin and K. A. Nugent. Non-interferometric phase determina-

tion. Advances in Imaging and Electron Physics, 118:85–127, 2001.

[Pag02] D. Paganin, S. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins.

Simultaneous phase and amplitude extraction from a single defocused

image of a homogeneous object.Journal of Microscopy (Paris),

206:33–40, 2002.



BIBLIOGRAPHY 167

[Pag04a] D. Paganin, A. Barty, P.J. McMahon, and K. A. Nugent. Quantitative

phase-amplitude microscopy. III. The effects of noise.Journal of

Microscopy, 214(12):51–61, 2004.

[Pag04b] D. Paganin, T.E. Gureyev, K.M. Pavlov, R.A. Lewis,and M. Kitchen.

Phase retrieval using coherent imaging systems with lineartransfer

functions.Optics Communications, 234:87–105, 2004.

[Pag98] D. Paganin and K. A. Nugent. Noninterferometric phase imaging

with partially coherent light.Physical Review Letters, 80(12):2586–9,

1998.

[Pag99] D. Paganin.Studies in phase retrieval. PhD thesis, School of Physics,

University of Melbourne, 1999.

[Par54] L.G. Parratt. Surface studies of solids by total reflection of x-rays.

Physical Review, 95:359–69, 1954.

[Pee05] A.G. Peele, F. De Carlo, P.J. McMahon, B.B. Dhal, andK. A. Nugent.

X-ray phase contrast tomography with a bending magnet source. Re-

view of Scientific Instruments, 76(8):83707–1–5, 2005.

[Pog97] A. Pogany, D. Gao, and S. W. Wilkins. Contrast and resolution in

imaging with a microfocus x-ray source.Review of Scientific Instru-

ments, 68(7):2774–82, 1997.

[Pre88] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T.Vetterling. Nu-

merical recipes in C: The art of scientific computing. Cambridge Uni-

versity Press, Cambridge, 1988.

[Ric98] R.A. Richardson and T.L. Houck. Roll bar x-ray

spot size measurement technique. Joint Accelera-

tor Conferences Website, LINAC98(TH4063), 1998,

http://accelconf.web.cern.ch/accelconf/l98/papers/TH4063.pdf.

[Rob75] A. Robinson and G.M. Grimshaw. Measurement of the focal spot size

of diagnostic x-ray tubes - a comparison of pinhole and resolution

methods.British Journal of Radiology, 48:572–80, 1975.

[Sch94] G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, and B. Niemann.

Phase contrast x-ray microscopy studies.Optik, 97(4):181–2, 1994.



168 BIBLIOGRAPHY

[Sni95] A. Snigirev, I. Snigreva, V. Kohn, S. Kuznetsov, andI. Schelokov.

On the possibilities of x-ray phase contrast microimaging by coherent

high-energy synchrotron radiation.Review of Scientific Instruments,

66(12):5486–92, 1995.

[Spa99] P. Spanne, C. Raven, I. Snigireva, and A. Snigirev. In-line holog-

raphy and phase-contrast microtomography with high energyx-rays.

Physics in Medicine and Biology, 44(3):741–9, 1999.

[Ste99] A. W. Stevenson, D. Gao, T. E. Gureyev, A. Pogany, andS. W.

Wilkins. Hard x-ray phase-contrast imaging with a microfocus source.

Nondestructive Characterization of Materials IX, CP497:641–8,

1999.

[Tea83] M. R. Teague. Deterministic phase retrieval: a green’s function solu-

tion. Journal of the Optical Society of America, 73(11):1434–1441,

1983.

[Tho05] J. Thornton, B.D. Arhatari, A.G. Peele, and K.A. Nugent. Optimising

visibility for the neutron radiography of titanium and nickel gas tur-

bine components.(a manuscript is in preparation to be published in

Elsevier Science).

[Tik63] A.N. Tikhonov. Solution of incorrectly formulatedproblems and the

regularization method.Soviet Mathematics Doklady, 4:1035–8, 1963.

[Tot05] R. Toth, J.C. Kieffer, S. Fourmaux, and T. Ozaki. In-line phase con-

trast imaging with a laser-based hard x-ray source.Review of Scientific

Instruments, 76:0837011–6, 2005.

[Tur04a] L. D. Turner, A.G. Peele, B. Dhal, A.P. Mancuso, R. E. Scholten, C. Q.

Tran, K. A. Nugent, J. P. Hayes, and D Paterson. X-ray phase imag-

ing: Demonstration of extended conditions for homogeneousobjects.

Optics Express, 12(13):2960–5, 2004.

[Tur04b] L.D. Turner.Holographic imaging of cold atoms. PhD thesis, School

of Physics, University of Melbourne, 2004.

[Wan01] Y. Wang, F. De Carlo, D.C. Mancini, I. McNulty, B. Tieman, J. Bres-

nahan, I. Foster, J. Insley, P. Lane, G. von Laszewski, C. Kesselman,

Mei-Hui Su, and M. Thiebaux. A high-throughput x-ray microto-

mography system at the advanced photon source.Review of Scientific

Instruments, 72(4):2062–8, 2001.



BIBLIOGRAPHY 169

[Wat79] T. Watanabe. The mottling appearing on radiographsof stainless steel

weldments and castings.British Journal of Non-Destructive Testing,

21(6):299–307, 2004.

[Wil96] S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A.W. Steven-

son. Phase-contrast imaging using polychromatic hard x-rays. Nature

(London), 384(6607):335–8, 1996.

[Win95] H. Winick. Synchrotron Radiation Sources. World Scientific, 1995.

[Wu03] X. Wu and H. Liu. A general theoretical formalism for x-ray phase

contrast imaging.Journal of X-Ray Science and Technology, 11:33–

42, 2003.

[Wu05] X. Wu, H. Liu, and A. Yan. X-ray phase attenuation duality and phase

retrieval.Optics Letters, 30(4):379–381, 2005.

[Zab05] S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker.

Optimization of phase contrast imaging using hard x-rays.Review of

Scientific Instruments, 76:0737051–7, 2005.

[Zak04] B. Zakharin and J. Stricker. Schlieren systems withcoherent illumina-

tion for quantitative measurements.Applied Optics, 43(25):4786–95,

2004.

[Zer42] F. Zernike. Phase contrast, a new method for the microscopic obser-

vation of transparent objects.Physica, IX(7):686–93, 1942.

[cxr95] The center for x-ray optics (CXRO) at Lawrence Berke-

ley National Laboratory. X-ray interactions with matter.

http://www.cxro.lbl.gov/opticalconstants/.
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