275 research outputs found

    Job training and inequality

    Get PDF
    This thesis is composed of three chapters. After a brief introduction, the first chapter discusses the definition of on-the-job training, reviews the literature, and reports empirical analyses for the specific case of UK. I decompose training participation and study its evolution in the last 20 years for specific sub-groups of workers, providing new compelling evidence. The second chapter finds empirical evidence in favour of a relation between training and wage inequality between workers with different education level. On this basis, a dynamic general equilibrium (DGE) model with on-the-job training is developed and calibrated to match UK data. I use the framework to study the redistributional effects of training subsidies. The model is intentionally simple, to allow for a better understanding of the dynamics of macroeconomic variables after policy changes. The third chapter proposes a more articulated general equilibrium model which features training externalities and distortionary income taxes. I present evidence that motivates the use of this framework, and its underlying assumptions. Thus, I calibrate the model to replicate the salient characteristics of the UK economy and I employ it to evaluate the welfare effects of policy reforms on training. The main contributions of my work are summarised in the conclusions

    21th Century: TV series go beyond the screens

    Get PDF

    The Mutual Orbit, Mass, and Density of Transneptunian Binary Gknhmdm (229762 2007 UK126)

    Get PDF
    We present high spatial resolution images of the binary transneptunian object Gkn'hmdm (229762 2007 UK126) obtained with the Hubble Space Telescope and with the Keck observatory on Mauna Kea to determine the orbit of G' hG' h, the much smaller and redder satellite. G' h orbits in a prograde sense, on a circular or near-circular orbit with a period of 11.3 days and a semimajor axis of 6000 km. Tidal evolution is expected to be slow, so it is likely that the system formed already in a low-eccentricity configuration, and possibly also with the orbit plane of the satellite in or close to the plane of Gkn'hmdm's equator. From the orbital parameters we can compute the system mass to be 1.4 10(exp 20) kg. Combined with estimates of the size of Gkn'hmdm from thermal observations and stellar occultations, we can estimate the bulk density as about 1 g cm(exp 3). This low density is indicative of an ice-rich composition, unless there is substantial internal porosity. We consider the hypothesis that the composition is not unusually ice-rich compared with larger TNOs and comet nuclei, and instead the porosity is high, suggesting that mid-sized objects in the 400 to 1000 km diameter range mark the transition between small, porous objects and larger objects that have collapsed their internal void space as a result of their much higher internal pressures and temperatures

    Mutual Events in the Cold Classical Transneptunian Binary System Sila and Nunam

    Full text link
    Hubble Space Telescope observations between 2001 and 2010 resolved the binary components of the Cold Classical transneptunian object (79360) Sila-Nunam (provisionally designated 1997 CS29). From these observations we have determined the circular, retrograde mutual orbit of Nunam relative to Sila with a period of 12.50995 \pm 0.00036 days and a semimajor axis of 2777 \pm 19 km. A multi-year season of mutual events, in which the two near-equal brightness bodies alternate in passing in front of one another as seen from Earth, is in progress right now, and on 2011 Feb. 1 UT, one such event was observed from two different telescopes. The mutual event season offers a rich opportunity to learn much more about this barely-resolvable binary system, potentially including component sizes, colors, shapes, and albedo patterns. The low eccentricity of the orbit and a photometric lightcurve that appears to coincide with the orbital period are consistent with a system that is tidally locked and synchronized, like the Pluto-Charon system. The orbital period and semimajor axis imply a system mass of (10.84 \pm 0.22) \times 10^18 kg, which can be combined with a size estimate based on Spitzer and Herschel thermal infrared observations to infer an average bulk density of 0.72 +0.37 -0.23 g cm^-3, comparable to the very low bulk densities estimated for small transneptunian binaries of other dynamical classes.Comment: In press in Icaru

    De-biased Populations of Kuiper Belt Objects from the Deep Ecliptic Survey

    Full text link
    The Deep Ecliptic Survey (DES) discovered hundreds of Kuiper Belt objects from 1998-2005. Follow-up observations yielded 304 objects with good dynamical classifications (Classical, Scattered, Centaur, or 16 mean-motion resonances with Neptune). The DES search fields are well documented, enabling us to calculate the probability of detecting objects with particular orbital parameters and absolute magnitudes at a randomized point in each orbit. Grouping objects together by dynamical class leads, we estimate the orbital element distributions (a, e, i) for the largest three classes (Classical, 3:2, and Scattered) using maximum likelihood. Using H-magnitude as a proxy for the object size, we fit a power law to the number of objects for 8 classes with at least 5 detected members (246 objects). The best Classical slope is alpha=1.02+/-0.01 (observed from 5<=H<=7.2). Six dynamical classes (Scattered plus 5 resonances) are consistent in slope with the Classicals, though the absolute number of objects is scaled. The exception to the power law relation are the Centaurs (non-resonant with perihelia closer than Neptune, and thus detectable at smaller sizes), with alpha=0.42+/-0.02 (7.5<H<11). This is consistent with a knee in the H-distribution around H=7.2 as reported elsewhere (Bernstein et al. 2004, Fraser et al. 2014). Based on the Classical-derived magnitude distribution, the total number of objects (H<=7) in each class are: Classical (2100+/-300 objects), Scattered (2800+/-400), 3:2 (570+/-80), 2:1 (400+/-50), 5:2 (270+/-40), 7:4 (69+/-9), 5:3 (60+/-8). The independent estimate for the number of Centaurs in the same H range is 13+/-5. If instead all objects are divided by inclination into "Hot" and "Cold" populations, following Fraser et al. (2014), we find that alphaHot=0.90+/-0.02, while alphaCold=1.32+/-0.02, in good agreement with that work.Comment: 26 pages emulateapj, 6 figures, 5 tables, accepted by A

    Buoyancy waves in Pluto's high atmosphere: Implications for stellar occultations

    Get PDF
    We apply scintillation theory to stellar signal fluctuations in the high-resolution, high signal/noise, dual-wavelength data from the MMT observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined high wavenumber cutoff in the fluctuations is consistent with viscous-thermal dissipation of buoyancy waves (internal gravity waves) in Pluto's high atmosphere, and provides strong evidence that the underlying density fluctuations are governed by the gravity-wave dispersion relation.Comment: Accepted 18 June 2009 for publication in Icaru
    corecore