112 research outputs found
Recommended from our members
How to Measure the Optical Quality of Focussing Solar Collectors without Laser Ray Tracing
Designers and Manufacturers need a tool for evaluating the optical quality of solar concentrators. This paper describes a novel alternative to the laser ray trace technique
Recommended from our members
Fission product gamma spectra
The fission product gamma spectra of /sup 233/U, /sup 235/U, and /sup 239/Pu were measured at 12 cooling times following 20,000-s irradiations in the thermal column of the Omega West Reactor. The mean cooling times ranged from 29 s to 146,500 s. The total gamma energies were obtained by integrating over the energy spectra, and both the spectra and the total energies are compared with calculations using the CINDER-10 code and ENDF/B-IV data base. The measured and calculated gamma spectra are compared in a series of figures. The measured total gamma energies are approx. 14% larger than the calculated energies during the earliest counting period (4 s to 54 s cooling time). For /sup 235/U, the measured and calculated total gamma energies are nearly the same after 1200 s cooling time, and the measurements are 2% to 6% lower at longer cooling times. For /sup 239/Pu, the measured and calculated total gamma energies are nearly the same at cooling times longer than 4,000 s, and for /sup 233/U this condition prevails at cooling times longer than 10,000 s. 39 figures, 4 tables
Optical Analysis and Optimization of Line Focus Solar Collectors
This paper describes a macroscopic approach that yields all the parameters needed for the optical design of line focus parabolic troughs in closed analytical form, requiring only minimal computation
Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations
We study the convergence and the stability of fictitious dynamical methods
for electrons. First, we show that a particular damped second-order dynamics
has a much faster rate of convergence to the ground-state than first-order
steepest descent algorithms while retaining their numerical cost per time step.
Our damped dynamics has efficiency comparable to that of conjugate gradient
methods in typical electronic minimization problems. Then, we analyse the
factors that limit the size of the integration time step in approaches based on
plane-wave expansions. The maximum allowed time step is dictated by the highest
frequency components of the fictitious electronic dynamics. These can result
either from the large wavevector components of the kinetic energy or from the
small wavevector components of the Coulomb potential giving rise to the so
called {\it charge sloshing} problem. We show how to eliminate large wavevector
instabilities by adopting a preconditioning scheme that is implemented here for
the first-time in the context of Car-Parrinello ab-initio molecular dynamics
simulations of the ionic motion. We also show how to solve the charge-sloshing
problem when this is present. We substantiate our theoretical analysis with
numerical tests on a number of different silicon and carbon systems having both
insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.
Quantum dynamics of local phase differences between reservoirs of driven interacting bosons separated by simple aperture arrays
We present a derivation of the effective action for the relative phase of
driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from
a (3+1)-D microscopic model with local U(1) gauge symmetry. We show that
inclusion of local chemical potential and driving velocity fields as a gauge
field allows derivation of the hydrodynamic equations of motion for the driven
macroscopic phase differences across simple aperture arrays. For a single
aperture, the current-phase equation for driven flow contains sinusoidal,
linear, and current-bias contributions. We compute the renormalization group
(RG) beta function of the periodic potential in the effective action for small
tunneling amplitudes and use this to analyze the temperature dependence of the
low-energy current-phase relation, with application to the transition from
linear to sinusoidal current-phase behavior observed in experiments by
Hoskinson et al. \cite{packard} for liquid He driven through nanoaperture
arrays. Extension of the microscopic theory to a two-aperture array shows that
interference between the microscopic tunneling contributions for individual
apertures leads to an effective coupling between apertures which amplifies the
Josephson oscillations in the array. The resulting multi-aperture current-phase
equations are found to be equivalent to a set of equations for coupled pendula,
with microscopically derived couplings.Comment: 16 pages, 5 figures v2: typos corrected, RG phase diagram correcte
First principles study of strain/electronic interplay in ZnO; Stress and temperature dependence of the piezoelectric constants
We present a first-principles study of the relationship between stress,
temperature and electronic properties in piezoelectric ZnO. Our method is a
plane wave pseudopotential implementation of density functional theory and
density functional linear response within the local density approximation. We
observe marked changes in the piezoelectric and dielectric constants when the
material is distorted. This stress dependence is the result of strong, bond
length dependent, hybridization between the O and Zn electrons. Our
results indicate that fine tuning of the piezoelectric properties for specific
device applications can be achieved by control of the ZnO lattice constant, for
example by epitaxial growth on an appropriate substrate.Comment: accepted for publication in Phys. Rev.
Towards robust functional neuroimaging genetics of cognition
A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms. SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10–100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits
First Principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite
We present results of local spin density approximation (LSDA) pseudopotential
calculations for the perovskite structure oxide, bismuth manganite (BiMnO3).
The origin of the differences between bismuth manganite and other perovskite
manganites is determined by first calculating total energies and band
structures of the high symmetry cubic phase, then sequentially lowering the
magnetic and structural symmetry. Our results indicate that covalent bonding
between bismuth cations and oxygen anions stabilizes different magnetic and
structural phases compared with the rare earth manganites. This is consistent
with recent experimental results showing enhancement of charge ordering in
doped bismuth manganite
- …