1,781 research outputs found

    Global timing: a conceptual framework to investigate the neural basis of rhythm perception in humans and non-human species

    Get PDF
    Timing cues are an essential feature of music. To understand how the brain gives rise to our experience of music we must appreciate how acoustical temporal patterns are integrated over the range of several seconds in order to extract global timing. In music perception, global timing comprises three distinct but often interacting percepts: temporal grouping, beat, and tempo. What directions may we take to further elucidate where and how the global timing of music is processed in the brain? The present perspective addresses this question and describes our current understanding of the neural basis of global timing perception

    Measurement of electric fields in the ionosphere, volume 2 Final report, Aug. 1966 - Sep. 1967

    Get PDF
    Electric field meter, using electron beam deflection techniques, for ionospheric measurement

    Neuronal Mechanisms and Transformations Encoding Time-Varying Signals

    Get PDF
    Sensation in natural environments requires the analysis of time-varying signals. While previous work has uncovered how a signal’s temporal rate is represented by neurons in sensory cortex, in this issue of Neuron, new evidence from Gao et al. (2016) provides insights on the underlying mechanisms

    Measurement of electric fields in the ionosphere. Volume 1 - Technical summary report Final report, Aug. 1966 - Sep. 1967

    Get PDF
    Design and performance of electron beam electric field meter for ionospheric measurements near spacecraf

    Does the Hippocampus Map Out the Future?

    Get PDF
    Decades of research have established two central roles of the hippocampus - memory consolidation and spatial navigation. Recently, a third function of the hippocampus has been proposed: simulating future events. However, claims that the neural patterns underlying simulation occur without prior experience have come under fire in light of newly published data

    Words without Near-Repetitions

    Get PDF
    We find an infinite word w on four symbols with the following property: Two occurrences of any block in w must be separated by more than the length of the block. That is, in any subword of w of the form xyx, the length of y is greater than the length of x. This answers a question of C. Edmunds connected to the Burnside problem for groups.The research of the first author was supported by an NSERC Operating Grant. The second author was supported by an NSERC Undergraduate Summer Research Award.https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/words-without-nearrepetitions/F86509D865F222F1FC63ACA8545C069

    A mouse model of autism implicates endosome pH in the regulation of presynaptic calcium entry.

    Get PDF
    Psychoactive compounds such as chloroquine and amphetamine act by dissipating the pH gradient across intracellular membranes, but the physiological mechanisms that normally regulate organelle pH remain poorly understood. Interestingly, recent human genetic studies have implicated the endosomal Na+/H+ exchanger NHE9 in both autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). Plasma membrane NHEs regulate cytosolic pH, but the role of intracellular isoforms has remained unclear. We now find that inactivation of NHE9 in mice reproduces behavioral features of ASD including impaired social interaction, repetitive behaviors, and altered sensory processing. Physiological characterization reveals hyperacidic endosomes, a cell-autonomous defect in glutamate receptor expression and impaired neurotransmitter release due to a defect in presynaptic Ca2+ entry. Acute inhibition of synaptic vesicle acidification rescues release but without affecting the primary defect due to loss of NHE9

    Loss of α-Synuclein Does Not Affect Mitochondrial Bioenergetics in Rodent Neurons.

    Get PDF
    Increased α-synuclein (αsyn) and mitochondrial dysfunction play central roles in the pathogenesis of Parkinson's disease (PD), and lowering αsyn is under intensive investigation as a therapeutic strategy for PD. Increased αsyn levels disrupt mitochondria and impair respiration, while reduced αsyn protects against mitochondrial toxins, suggesting that interactions between αsyn and mitochondria influences the pathologic and physiologic functions of αsyn. However, we do not know if αsyn affects normal mitochondrial function or if lowering αsyn levels impacts bioenergetic function, especially at the nerve terminal where αsyn is enriched. To determine if αsyn is required for normal mitochondrial function in neurons, we comprehensively evaluated how lowering αsyn affects mitochondrial function. We found that αsyn knockout (KO) does not affect the respiration of cultured hippocampal neurons or cortical and dopaminergic synaptosomes, and that neither loss of αsyn nor all three (α, β and γ) syn isoforms decreased mitochondria-derived ATP levels at the synapse. Similarly, neither αsyn KO nor knockdown altered the capacity of synaptic mitochondria to meet the energy requirements of synaptic vesicle cycling or influenced the localization of mitochondria to dopamine (DA) synapses in vivo. Finally, αsyn KO did not affect overall energy metabolism in mice assessed with a Comprehensive Lab Animal Monitoring System. These studies suggest either that αsyn has little or no significant physiological effect on mitochondrial bioenergetic function, or that any such functions are fully compensated for when lost. These results implicate that αsyn levels can be reduced in neurons without impairing (or improving) mitochondrial bioenergetics or distribution
    corecore