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WORDS WITHOUT NEAR-REPETITIONS 

J. CURRIE AND A. BENDOR-SAMUEL 

ABSTRACT. We find an infinite word w on four symbols with the following property: 
Two occurrences of any block in w must be separated by more than the length of the 
block. That is, in any subword of w of the form xyx, the length of y is greater than the 
length of x. This answers a question of C. Edmunds connected to the Burnside problem 
for groups. 

1. Introduction. In their solution of the Burnside problem for groups [5], Novikov 
and Adjan use a result from combinatorics on words: 

There is an infinite word v on the alphabet { 0,1} such that v contains no 
subword of the form xxx, x ^ e. [2,6] 

Novikov and Adjan invoke this result at the end of their notoriously long and involved 
proof. The bulk of their proof, filling a book of 300+ pages, involves constructions of 
groups. C. Edmunds [4] suggests that it may be possible to find a shorter proof by using 
stronger results from combinatorics on words, rather than by finding new group theoretic 
constructions. With this motivation, Edmunds poses the following question: 

Can one find a finite alphabet 5, and some infinite word w over S such that whenever 
xyx is a subword of w>, the length of y is greater than the length of JC? 

We answer Edmunds' question in the affirmative. The smallest alphabet for which 
such a w can exist is a 4 letter alphabet. 

2. Notation. Our notation follows the usual notation of automata theory. Let S be a 
set. A word is a finite sequence of elements of S. We refer to S as an alphabet, its elements 
as letters. The set of all words over S is denoted S*. We take a naive view of words as 
strings of letters; thus the concatenation of two words w and v, written wv, is simply the 
string of letters consisting of the letters of w followed by the letters of v. 

Say that v is a subword of w if we can write w = uvz\ u, v, z G S*. If w = uv then we 
say that u is a. prefix of w; v is a suffix of w. The empty word, denoted e, is the word with 
no letters in it. Denote by | w\ the length of w, equal to the number of letters of w. 

Let S, T be alphabets. A substitution h: S* —> T* is a function generated by its values 
on S. That is, suppose w G S*, w — a\a2 • • -am\ at G S for i — 1 to m. Then h(w) — 
h(ai)h(a2)--'h(am). 

The research of the first author was supported by an NSERC Operating Grant. 
The second author was supported by an NSERC Undergraduate Summer Research Award. 
Received by the editors February 13, 1991 . 
AMS subject classification: 68Q, 03C. 
© Canadian Mathematical Society 1992. 

161 



162 J. CURRIE AND A. BENDOR-SAMUEL 

Let S be an alphabet, w G S* a word over S. If we can write w = uxyxv with \y\ < \x\, 
u, v, JC, v G 5*, we call w near-repetitive, and call xyx a near-repetition. If w is not near-
repetitive, call w varied. 

3. Construction of varied words. By Kônig's Infinity Lemma, to show that there 
is an infinite varied word over a finite alphabet 5, it suffices to show that there are arbi­
trarily long varied words over S. Let S be the alphabet S = { 1,2,3,4,5}. Consider the 
substitution/: S* —•> S* given by 

/(1) = 

/(2) = 

/(3) = 

/(4) = 

/(5) = 

123145213412435 

123154234531425 

123152413425324 

123143254135245 

123153452132534. 

We will prove that/n(l) is varied. To begin, we make some observations concerning/: 

OBSERVATION 1. We see that/ replaces each letter of S by a string of fifteen letters. 
Thus if M ES*, \f(u)\ = \5\u\. m 

OBSERVATION 2. The images of different letters under/ can have a common suffix 
of length at most 1. That is, suppose that u,v £ S and we have 

f(u) = UW, f(v) =VW, \W\>2. 

Then u — v. m 
One concludes from Observation 2 that/ is 1-1. 

OBSERVATION 3. The images of different letters under/ can have a common prefix 
of length at most 5. Thus suppose that u,v E S and we have 

f(u) = WU", f(v) = WV", \W\>6. 

It follows that u — v. • 

OBSERVATION 4. The images of different letters under/ can have a common sub-
word of length at most 6. In fact, suppose that w, v G S and we have 

f(u) = l/WU", f(v) = VWV", | W\ > 1. 

We must have If - V, U" = V", u = v. m 

OBSERVATION 5. Call a word w a suffix-prefix if we can write w — uv where u is the 
non-empty suffix of the image of some letter under/, and v is the non-empty prefix of the 
image of some letter. Note that no non-empty prefix of the image of a letter is the suffix 
of the image of a letter. Thus if w can be expressed as a suffix-prefix then the words u 
and v are unique. 

file:///5/u/
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The longest instance of a suffix-prefix in the image under/ of a letter is 3412 in/( l) . 
Thus if w, v, w G S and 

/ ( I I ) = ifV'W'U", /(v) = VV\ f(w) = W'W", with W\ V " / É , 

then | V"W | < 4. • 
Using some of these observations we prove the following lemma. 

LEMMA. Let u — u\u2 • • 'Um, v = v\v2 • • -vn with the Ui.Vj G S. Let/(«,-) = £/,-, 
/(vi) = Vi-. Suppose that for some word w we can write 

f(u)=UlU2--U'jwU,{Uk+l--Um 

and 
/(v) = VXV2 • • • VswV/Vt+i • • • Vn9 \w\ > 7 

uj = i/jU?9 uk = t/*£#, v, = v ; ^ , vf = vy;. 
Then 

\U'j\ = \V'S\ (mod 15), | ^ | = \V't
f\ (mod 15). 

PROOF. By Observation 1, it follows that 

\Uj\ +M+l t /£ / | =|VÎ|+|w| +1^1 = 0 (mod 15). 

It thus suffices to show that Uj = Vs (mod 15). To do this, we will assume that | w\ = 7, 
replacing w by its first 7 letters if necessary. It follows that k <j+l,t <s+l. We will 
also assume without loss of generality that | Uj\, | V's\, | U'l\, | V"\ < 15. The word w is 
thus a subword of U = UjUj+\ and of V — VsVs+\. 

Suppose that w is not a suffix-prefix. Then w must be a subword of either Uj or Uj+\. 
Assume first that w is a subword of Uj. Again, w must be a subword of either V5 or Vs+\. 
If w is a subword of V5, then Observation 4 implies that | f/j| = | Vj|, and we are done. 
Otherwise, w is a prefix of Vs+\, and | Vj| = 0. By Observation 4, w> is also a prefix of 
Uj, so that U'j — t — V's. (In this case 7 = k.) A symmetrical argument deals with the 
possibility that w is a subword of £//+i. 

Suppose then that w is a suffix-prefix, w = UjUj+l = Vf
s'V's+l. It follows from Obser­

vation 5 that U\ = V' m 
j A 

THEOREM 1. For alln G N, the wordfn{\) is varied. 

PROOF. We proceed by induction. One checks that /^ l ) = / ( l ) is varied. Let n be 
least such that/"(l) is near repetitive. Let e = ^ ^ • • • ^ b e a subword of / n - 1 ( l ) of 
minimal length such that/(e) contains a near repetition xyx, \y\ < \x\. It is convenient 
to make two cases: 
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CASE 1. We have |x| < 6. 
In this case, |xyx| < 18. It follows that \e\ < 3. Moreover, e is a varied word since it 

is a subword of/n _ 1( l) . To show the impossibility of this case, it suffices to check that 
f(e) is varied whenever e G S* is varied and \e\ — 3. Such a word e must consist of three 
distinct letters, and one checks that the relevant 60 words are varied. 

CASE 2. We have |x| > 7. We may also assume, by our disposition of case 1, that 
m > 4 . 

Let/O;) = Et and write f(e) — E,
lxyxE?Jn — E,

lxEfjEj+\ • • Em = E\ • • 'EkxE'^ where 
Ex = Ef

lE
,{, Ej = EfjEfJ, Ek = Ef

kE
,
k\ Em = Ef

mEf^l and £?, £j, ££, E'm are non-empty. 
(We know that Ef{ and Ef

m are non-empty by the minimality of | e\. Let the others be non­
empty by a notational convention.) We must have y < m. Otherwise £2 £3 is a subword 
of our first occurrence of x, but the second occurence of x is a subword of Em. This 
is a contradiction on the length of x. Also, k < m. Otherwise the second occurrence 
of x is a subword of £m, but £^£2 £3 is a subword of xy. This gives the contradiction 
30 < \Ef{E2E3\ < \xy\ < 2\x\ < 2\Em\ = 30. Similarly, \<j<k<m. 

By the lemma, 1^1 = |£^|, \E?j\ = |£^| (mod 15). Since £'/, Ef
j, E!'k, E'm are non­

empty, the congruence can in fact be replaced by equality. Without loss of generality, we 
may assume that \E"\ < 1. Suppose not. Then \E"\ = \E'k\ > 2. Since E![ and E!k are 
prefixes of JC, and have the same length they are equal. It follows from Observation 3 that 
e\ = ek. 

Write x = xY' where 1^1= max(0,1^1 - \y\). \î\y\ > \E\\, then write y = yy" 
where \yf'\ — \Elx\. Otherwise, let y = e. We see that/(^) contains the near repetition xyx, 
where x = Ef

lx
/. If we replace x by i , and y by y in our argument, we get \E\\ = 0 . (In 

other words, we extend both the occurrences of our original x by adding a prefix E\ — Ef
k 

in front. In the case of the second JC, this will shorten y by | E\ \. If | y \ is shorter than \E\\, 
an amount IZ^ | — \y\ is removed from the end of each x, and y disappears.) Similarly, 
without loss of generality, we may assume that \E'm\ < 5. 

We can write 

x = £^£2 -"Ej = EkEk+i - • • Em. 

In fact, E![ — E!k, E'J = £^, £2£3 • • -£/-i = £jt+i£fc+2 • * mEm-\. Since/ is 1-1, we have 
e2- -ej-\ = ek+\ --em-\. 

Let a = e2 - - ej-i = ek+\ • • • em-\, b = e}• - • • ek. We claim that aba is a near repetition 
in e\ that is, that \b\ < \a\. This will be a contradiction, for e must be varied. If7 = k the 
claim is clearly true. Otherwise, 

\a\ = \e2--ej-i\ = (|£2 • • -E/-i | ) / 15 

= (W-(£Î|+|£J|))/15 

> ( | x | - ( l + 5 ) ) / 1 5 

= ( | X | - 6 ) / 1 5 , 
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\b\ = \ej---ek\ =(\Ej-- -Ek\)/ 15 

= (M+(|£ÎI+|£Ï|))/15 
< ( | * | + 6 ) / 1 5 . 

It follows that \b\ — \a\ < 12/ 15. Since \a\ and \b\ are integers, we conclude that 
\b\<\a\. 

One discovers quickly that the longest varied words over the alphabet { 1,2,3} are 
permutations of 1231. Thus there is no infinite varied word on a 3 letter alphabet. Let 
T = { 1,2,3,4}, and let g: T —• T* be given by 

g(l) =123421432413423124321341231421324123421431241321423124 

321341231432413421431234132142312413421432412314213243 

g(2) =123421432413423124321423413243123421324123142134124231 

423124132143123413243142134123143213423124321423413243 

g(3) =123421432413423143213412314213243123413214312413421432 

412314213412431423413243123421324123143213412431421324 

g(4) =123421432413423143213412431423413214312413421432412342 

132431423412432134231432413421431241321423412431421324 

THEOREM 2. 77*e wwd g"(l) w varied for every n G N. 

This theorem is proved analogously to Theorem 1, with proportionately more check­
ing. We see that g replaces each letter of T by a string of 108 letters. The images of 
different letters under g can have a common suffix of length at most 13, a common pre­
fix of length at most 24. With similar observations and proceeding as in the previous 
theorem, one establishes a lemma: 

LEMMA. Let u = u\U2 • • • um, v — v\V2 • • • vn with the ut, Vj G S. Let g(ut) — £//, 
giyt) = Vif. Suppose that for some word w we can write 

g(u) =UXU2-" UfjWU'lUk+l .-.Um andg(v) = V, V2 • • • VswV/Vt+l • • • V„, 

\w\ > 38 where 

uj = i/ji/;, uk = ifkui vs = vx, v, = vy; 
Then 

\Uj\ = \V'S\ (mod 108), | ^ | = \V't'\ (mod 108). 

• 

The proof of Theorem 2 is similar to that of Theorem 1. In the final phase, the proof of 
Theorem 1 depended on an inequality involving the quantities in Observations 1, 2 and 
3: 1 + 5 < 15/ 2. In Theorem 2, we have the analogous inequality: 13 + 24 < 108/ 2. 

We have thus answered Edmunds' question in the affirmative, and shown that a four 
letter alphabet is the smallest on which infinite varied words exist. 
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