9,312 research outputs found

    Comment on ``Structure of exotic nuclei and superheavy elements in a relativistic shell model''

    Get PDF
    A recent paper [M. Rashdan, Phys. Rev. C 63, 044303 (2001)] introduces the new parameterization NL-RA1 of the relativistic mean-field model which is claimed to give a better description of nuclear properties than earlier ones. Using this model ^{298}114 is predicted to be a doubly-magic nucleus. As will be shown in this comment these findings are to be doubted as they are obtained with an unrealistic parameterization of the pairing interaction and neglecting ground-state deformation.Comment: 2 pages REVTEX, 3 figures, submitted to comment section of Phys. Rev. C. shortened and revised versio

    Shape Coexistence in Pb186: Beyond-mean-field description by configuration mixing of symmetry restored wave functions

    Get PDF
    We study shape coexistence in Pb186 using configuration mixing of angular-momentum and particle-number projected self-consistent mean-field states. The same Skyrme interaction SLy6 is used everywhere in connection with a density-dependent zero-range pairing force. The model predicts coexisting spherical, prolate and oblate 0+ states at low energy.Comment: 5 pages REVTEX4, 4 eps figures, accepted by Phys. Lett. B. Revised version with some polishing of the text without changing its conten

    Homogeneity of Stellar Populations in Early-Type Galaxies with Different X-ray Properties

    Full text link
    We have found the stellar populations of early-type galaxies are homogeneous with no significant difference in color or Mg2 index, despite the dichotomy between X-ray extended early-type galaxies and X-ray compact ones. Since the X-ray properties reflect the potential gravitational structure and hence the process of galaxy formation, the homogeneity of the stellar populations implies that the formation of stars in early-type galaxies predat es the epoch when the dichotomy of the potential structure was established.Comment: 6 pages, 5 figures, accepted for publication in Ap

    Does the complex deformation of the Riemann equation exhibit shocks?

    Full text link
    The Riemann equation ut+uux=0u_t+uu_x=0, which describes a one-dimensional accelerationless perfect fluid, possesses solutions that typically develop shocks in a finite time. This equation is \cP\cT symmetric. A one-parameter \cP\cT-invariant complex deformation of this equation, utiu(iux)ϵ=0u_t-iu(iu_x)^\epsilon= 0 (ϵ\epsilon real), is solved exactly using the method of characteristic strips, and it is shown that for real initial conditions, shocks cannot develop unless ϵ\epsilon is an odd integer.Comment: latex, 8 page

    Fission modes of 256Fm and 258Fm in a microscopic approach

    Full text link
    A static microscopic study of potential-energy surfaces within the Skyrme-Hartree-Fock-plus-BCS model is carried out for the 256Fm and 258Fm isotopes with the goal of deducing some properties of spontaneous fission. The calculated fission modes are found to be in agreement with the experimentaly observed asymmetric-to-symmetric transition in the fragment-mass distributions and with the high- and low-total-kinetic-energy modes experimentally observed in 258Fm. Most of the results are similar to those obtained in macroscopic-microscopic models as well as in recent Hartree-Fock-Bogolyubov calculations with the Gogny interaction, with a few differences in their interpretations. In particular an alternative explanation is proposed for the low-energy fission mode of 258Fm.Comment: 14 pages, 11 figures, 3 tables, submitted to Phys. Rev.

    Cross-Document Pattern Matching

    Get PDF
    We study a new variant of the string matching problem called cross-document string matching, which is the problem of indexing a collection of documents to support an efficient search for a pattern in a selected document, where the pattern itself is a substring of another document. Several variants of this problem are considered, and efficient linear-space solutions are proposed with query time bounds that either do not depend at all on the pattern size or depend on it in a very limited way (doubly logarithmic). As a side result, we propose an improved solution to the weighted level ancestor problem

    Weighted ancestors in suffix trees

    Full text link
    The classical, ubiquitous, predecessor problem is to construct a data structure for a set of integers that supports fast predecessor queries. Its generalization to weighted trees, a.k.a. the weighted ancestor problem, has been extensively explored and successfully reduced to the predecessor problem. It is known that any solution for both problems with an input set from a polynomially bounded universe that preprocesses a weighted tree in O(n polylog(n)) space requires \Omega(loglogn) query time. Perhaps the most important and frequent application of the weighted ancestors problem is for suffix trees. It has been a long-standing open question whether the weighted ancestors problem has better bounds for suffix trees. We answer this question positively: we show that a suffix tree built for a text w[1..n] can be preprocessed using O(n) extra space, so that queries can be answered in O(1) time. Thus we improve the running times of several applications. Our improvement is based on a number of data structure tools and a periodicity-based insight into the combinatorial structure of a suffix tree.Comment: 27 pages, LNCS format. A condensed version will appear in ESA 201

    The two-proton shell gap in Sn isotopes

    Full text link
    We present an analysis of two-proton shell gaps in Sn isotopes. As the theoretical tool we use self-consistent mean-field models, namely the relativistic mean-field model and the Skyrme-Hartree-Fock approach, both with two different pairing forces, a delta interaction (DI) model and a density-dependent delta interaction (DDDI). We investigate the influence of nuclear deformation as well as collective correlations and find that both effects contribute significantly. Moreover, we find a further significant dependence on the pairing force used. The inclusion of deformation plus correlation effects and the use of DDDI pairing provides agreement with the data.Comment: gzipped tar archiv containing LaTeX source, bibliography file (*.bbl), all figures as *.eps, and the style file

    Spin-orbit and tensor mean-field effects on spin-orbit splitting including self-consistent core polarizations

    Full text link
    A new strategy of fitting the coupling constants of the nuclear energy density functional is proposed, which shifts attention from ground-state bulk to single-particle properties. The latter are analyzed in terms of the bare single-particle energies and mass, shape, and spin core-polarization effects. Fit of the isoscalar spin-orbit and both isoscalar and isovector tensor coupling constants directly to the f5/2-f7/2 spin-orbit splittings in 40Ca, 56Ni, and 48Ca is proposed as a practical realization of this new programme. It is shown that this fit requires drastic changes in the isoscalar spin-orbit strength and the tensor coupling constants as compared to the commonly accepted values but it considerably and systematically improves basic single-particle properties including spin-orbit splittings and magic-gap energies. Impact of these changes on nuclear binding energies is also discussed.Comment: 15 pages, 7 figures, submitted to Physical Review

    Density distributions of superheavy nuclei

    Get PDF
    We employed the Skyrme-Hartree-Fock model to investigate the density distributions and their dependence on nuclear shapes and isospins in the superheavy mass region. Different Skyrme forces were used for the calculations with a special comparison to the experimental data in 208^{208}Pb. The ground-state deformations, nuclear radii, neutron skin thicknesses and α\alpha-decay energies were also calculated. Density distributions were discussed with the calculations of single-particle wavefunctions and shell fillings. Calculations show that deformations have considerable effects on the density distributions, with a detailed discussion on the 292^{292}120 nucleus. Earlier predictions of remarkably low central density are not supported when deformation is allowed for.Comment: 7 pages, 10 figure
    corecore