268 research outputs found

    Non-perturbative calculations for the effective potential of the PTPT symmetric and non-Hermitian (gϕ4)(-g\phi^{4}) field theoretic model

    Get PDF
    We investigate the effective potential of the PTPT symmetric (gϕ4)(-g\phi^{4}) field theory, perturbatively as well as non-perturbatively. For the perturbative calculations, we first use normal ordering to obtain the first order effective potential from which the predicted vacuum condensate vanishes exponentially as GG+G\to G^+ in agreement with previous calculations. For the higher orders, we employed the invariance of the bare parameters under the change of the mass scale tt to fix the transformed form totally equivalent to the original theory. The form so obtained up to G3G^3 is new and shows that all the 1PI amplitudes are perurbative for both G1G\ll 1 and G1G\gg 1 regions. For the intermediate region, we modified the fractal self-similar resummation method to have a unique resummation formula for all GG values. This unique formula is necessary because the effective potential is the generating functional for all the 1PI amplitudes which can be obtained via nE/bn\partial^n E/\partial b^n and thus we can obtain an analytic calculation for the 1PI amplitudes. Again, the resummed from of the effective potential is new and interpolates the effective potential between the perturbative regions. Moreover, the resummed effective potential agrees in spirit of previous calculation concerning bound states.Comment: 20 page

    Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay

    Get PDF
    The quantum field theory of superluminal (tachyonic) particles is plagued with a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packets in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin-1/2 particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed.Comment: 12 pages, 5 figure

    Concerning the quark condensate

    Get PDF
    A continuum expression for the trace of the massive dressed-quark propagator is used to explicate a connection between the infrared limit of the QCD Dirac operator's spectrum and the quark condensate appearing in the operator product expansion, and the connection is verified via comparison with a lattice-QCD simulation. The pseudoscalar vacuum polarisation provides a good approximation to the condensate over a larger range of current-quark masses.Comment: 7 pages, LaTeX2e, revtex

    Environment-induced dynamical chaos

    Get PDF
    We examine the interplay of nonlinearity of a dynamical system and thermal fluctuation of its environment in the ``physical limit'' of small damping and slow diffusion in a semiclassical context and show that the trajectories of c-number variables exhibit dynamical chaos due to the thermal fluctuations of the bath.Comment: Revtex, 4 pages and 4 figure

    Monte-Carlo sampling of energy-constrained quantum superpositions in high-dimensional Hilbert spaces

    Full text link
    Recent studies into the properties of quantum statistical ensembles in high-dimensional Hilbert spaces have encountered difficulties associated with the Monte-Carlo sampling of quantum superpositions constrained by the energy expectation value. A straightforward Monte-Carlo routine would enclose the energy constrained manifold within a larger manifold, which is easy to sample, for example, a hypercube. The efficiency of such a sampling routine decreases exponentially with the increase of the dimension of the Hilbert space, because the volume of the enclosing manifold becomes exponentially larger than the volume of the manifold of interest. The present paper explores the ways to optimise the above routine by varying the shapes of the manifolds enclosing the energy-constrained manifold. The resulting improvement in the sampling efficiency is about a factor of five for a 14-dimensional Hilbert space. The advantage of the above algorithm is that it does not compromise on the rigorous statistical nature of the sampling outcome and hence can be used to test other more sophisticated Monte-Carlo routines. The present attempts to optimise the enclosing manifolds also bring insights into the geometrical properties of the energy constrained manifold itself.Comment: 9 pages, 7 figures, accepted for publication in European Physical Journal

    Quantum Extremism: Effective Potential and Extremal Paths

    Full text link
    The reality and convexity of the effective potential in quantum field theories has been studied extensively in the context of Euclidean space-time. It has been shown that canonical and path-integral approaches may yield different results, thus resolving the `convexity problem'. We discuss the transferral of these treatments to Minkowskian space-time, which also necessitates a careful discussion of precisely which field configurations give the dominant contributions to the path integral. In particular, we study the effective potential for the N=1 linear sigma model.Comment: 11 pages, 4 figure

    Trisubstituted-imidazoles induce apoptosis in human breast cancer cells by targeting the oncogenic PI3K/Akt/mTOR signaling pathway

    Get PDF
    Overactivation of PI3K/Akt/mTOR is linked with carcinogenesis and serves a potential molecular therapeutic target in treatment of various cancers. Herein, we report the synthesis of trisubstituted-imidazoles and identified 2-chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (CIP) as lead cytotoxic agent. Naïve Base classifier model of in silico target prediction revealed that CIP targets RAC-beta serine/threonine-protein kinase which comprises the Akt. Furthermore, CIP downregulated the phosphorylation of Akt, PDK and mTOR proteins and decreased expression of cyclin D1, Bcl-2, survivin, VEGF, procaspase-3 and increased cleavage of PARP. In addition, CIP significantly downregulated the CXCL12 induced motility of breast cancer cells and molecular docking calculations revealed that all compounds bind to Akt2 kinase with high docking scores compared to the library of previously reported Akt2 inhibitors. In summary, we report the synthesis and biological evaluation of imidazoles that induce apoptosis in breast cancer cells by negatively regulating PI3K/Akt/mTOR signaling pathway

    Zitterbewegung in External Magnetic Field: Classic versus Quantum Approach

    Full text link
    We investigate variations of the Zitterbewegung frequency of electron due to an external static and uniform magnetic field employing the expectation value quantum approach, and compare our results with the classical model of spinning particles. We demonstrate that these two so far compatible approaches are not in agreement in the presence of an external uniform static magnetic field, in which the classical approach breaks the usual symmetry of free particles and antiparticles states, i.e. it leads to CP violation. Hence, regarding the Zitterbewegung frequency of electron, the classical approach in the presence of an external magnetic field is unlikely to correctly describe the spin of electron, while the quantum approach does, as expected. We also show that the results obtained via the expectation value are in close agreement with the quantum approach of the Heisenberg picture derived in the literature. However, the method we use is capable of being compared with the classical approach regarding the spin aspects. The classical interpretation of spin produced by the altered Zitterbewegung frequency, in the presence of an external magnetic field, are discussed.Comment: 16 pages, no figure

    Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects

    Full text link
    Using the helicity method we derive complete formulas for the joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the decay chain is analyzed in the respective rest system of that particle. Such an approach is ideally suited as input for a Monte Carlo event generation program. As a specific example we take the decay Ξ0Σ++l+νˉl\Xi^0 \to \Sigma^+ + l^- + \bar{\nu}_l (l=e,μl^-=e^-, \mu^-) followed by the nonleptonic decay Σ+p+π0\Sigma^+ \to p + \pi^0 for which we show a few examples of decay distributions which are generated from a Monte Carlo program based on the formulas presented in this paper. All the results of this paper are also applicable to the semileptonic and nonleptonic decays of ground state charm and bottom baryons, and to the decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos corrected, comments added, references added and update

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
    corecore