10,222 research outputs found

    WKB Analysis of PT-Symmetric Sturm-Liouville problems

    Full text link
    Most studies of PT-symmetric quantum-mechanical Hamiltonians have considered the Schroedinger eigenvalue problem on an infinite domain. This paper examines the consequences of imposing the boundary conditions on a finite domain. As is the case with regular Hermitian Sturm-Liouville problems, the eigenvalues of the PT-symmetric Sturm-Liouville problem grow like n2n^2 for large nn. However, the novelty is that a PT eigenvalue problem on a finite domain typically exhibits a sequence of critical points at which pairs of eigenvalues cease to be real and become complex conjugates of one another. For the potentials considered here this sequence of critical points is associated with a turning point on the imaginary axis in the complex plane. WKB analysis is used to calculate the asymptotic behaviors of the real eigenvalues and the locations of the critical points. The method turns out to be surprisingly accurate even at low energies.Comment: 11 pages, 8 figure

    Green Functions for the Wrong-Sign Quartic

    Full text link
    It has been shown that the Schwinger-Dyson equations for non-Hermitian theories implicitly include the Hilbert-space metric. Approximate Green functions for such theories may thus be obtained, without having to evaluate the metric explicitly, by truncation of the equations. Such a calculation has recently been carried out for various PTPT-symmetric theories, in both quantum mechanics and quantum field theory, including the wrong-sign quartic oscillator. For this particular theory the metric is known in closed form, making possible an independent check of these approximate results. We do so by numerically evaluating the ground-state wave-function for the equivalent Hermitian Hamiltonian and using this wave-function, in conjunction with the metric operator, to calculate the one- and two-point Green functions. We find that the Green functions evaluated by lowest-order truncation of the Schwinger-Dyson equations are already accurate at the (6-8)% level. This provides a strong justification for the method and a motivation for its extension to higher order and to higher dimensions, where the calculation of the metric is extremely difficult

    Quantum tunneling as a classical anomaly

    Full text link
    Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret quantum tunneling as an anomaly. A numerical comparison of complex classical tunneling probabilities with quantum tunneling probabilities leads to the conjecture that as ReE increases, complex classical tunneling probabilities approach the corresponding quantum probabilities. Thus, this work attempts to generalize the Bohr correspondence principle from classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure

    Harmonic oscillator well with a screened Coulombic core is quasi-exactly solvable

    Full text link
    In the quantization scheme which weakens the hermiticity of a Hamiltonian to its mere PT invariance the superposition V(x) = x^2+ Ze^2/x of the harmonic and Coulomb potentials is defined at the purely imaginary effective charges (Ze^2=if) and regularized by a purely imaginary shift of x. This model is quasi-exactly solvable: We show that at each excited, (N+1)-st harmonic-oscillator energy E=2N+3 there exists not only the well known harmonic oscillator bound state (at the vanishing charge f=0) but also a normalizable (N+1)-plet of the further elementary Sturmian eigenstates \psi_n(x) at eigencharges f=f_n > 0, n = 0, 1, ..., N. Beyond the first few smallest multiplicities N we recommend their perturbative construction.Comment: 13 pages, Latex file, to appear in J. Phys. A: Math. Ge

    Guidance, flight mechanics and trajectory optimization. Volume 12 - Relative motion, guidance equations for terminal rendezvous

    Get PDF
    Equations of relative motion and guidance for orbital transfer and docking maneuvers in spacecraft rendezvou

    Semiclassical Analysis of Quasi-Exact Solvability

    Get PDF
    Higher-order WKB methods are used to investigate the border between the solvable and insolvable portions of the spectrum of quasi-exactly solvable quantum-mechanical potentials. The analysis reveals scaling and factorization properties that are central to quasi-exact solvability. These two properties define a new class of semiclassically quasi-exactly solvable potentials.Comment: 12 pages, ReVTe

    Exact PT-Symmetry Is Equivalent to Hermiticity

    Full text link
    We show that a quantum system possessing an exact antilinear symmetry, in particular PT-symmetry, is equivalent to a quantum system having a Hermitian Hamiltonian. We construct the unitary operator relating an arbitrary non-Hermitian Hamiltonian with exact PT-symmetry to a Hermitian Hamiltonian. We apply our general results to PT-symmetry in finite-dimensions and give the explicit form of the above-mentioned unitary operator and Hermitian Hamiltonian in two dimensions. Our findings lead to the conjecture that non-Hermitian CPT-symmetric field theories are equivalent to certain nonlocal Hermitian field theories.Comment: Few typos have been corrected and a reference update

    Vacuum Stability of the wrong sign (−ϕ6)(-\phi^{6}) Scalar Field Theory

    Full text link
    We apply the effective potential method to study the vacuum stability of the bounded from above (−ϕ6)(-\phi^{6}) (unstable) quantum field potential. The stability (∂E/∂b=0)\partial E/\partial b=0) and the mass renormalization (∂2E/∂b2=M2)\partial^{2} E/\partial b^{2}=M^{2}) conditions force the effective potential of this theory to be bounded from below (stable). Since bounded from below potentials are always associated with localized wave functions, the algorithm we use replaces the boundary condition applied to the wave functions in the complex contour method by two stability conditions on the effective potential obtained. To test the validity of our calculations, we show that our variational predictions can reproduce exactly the results in the literature for the PT\mathcal{PT}-symmetric ϕ4\phi^{4} theory. We then extend the applications of the algorithm to the unstudied stability problem of the bounded from above (−ϕ6)(-\phi^{6}) scalar field theory where classical analysis prohibits the existence of a stable spectrum. Concerning this, we calculated the effective potential up to first order in the couplings in dd space-time dimensions. We find that a Hermitian effective theory is instable while a non-Hermitian but PT\mathcal{PT}-symmetric effective theory characterized by a pure imaginary vacuum condensate is stable (bounded from below) which is against the classical predictions of the instability of the theory. We assert that the work presented here represents the first calculations that advocates the stability of the (−ϕ6)(-\phi^{6}) scalar potential.Comment: 21pages, 12 figures. In this version, we updated the text and added some figure

    Interactions of Hermitian and non-Hermitian Hamiltonians

    Full text link
    The coupling of non-Hermitian PT-symmetric Hamiltonians to standard Hermitian Hamiltonians, each of which individually has a real energy spectrum, is explored by means of a number of soluble models. It is found that in all cases the energy remains real for small values of the coupling constant, but becomes complex if the coupling becomes stronger than some critical value. For a quadratic non-Hermitian PT-symmetric Hamiltonian coupled to an arbitrary real Hermitian PT-symmetric Hamiltonian, the reality of the ground-state energy for small enough coupling constant is established up to second order in perturbation theory.Comment: 9 pages, 0 figure
    • …
    corecore