It has been shown that the Schwinger-Dyson equations for non-Hermitian
theories implicitly include the Hilbert-space metric. Approximate Green
functions for such theories may thus be obtained, without having to evaluate
the metric explicitly, by truncation of the equations. Such a calculation has
recently been carried out for various PT-symmetric theories, in both quantum
mechanics and quantum field theory, including the wrong-sign quartic
oscillator. For this particular theory the metric is known in closed form,
making possible an independent check of these approximate results. We do so by
numerically evaluating the ground-state wave-function for the equivalent
Hermitian Hamiltonian and using this wave-function, in conjunction with the
metric operator, to calculate the one- and two-point Green functions. We find
that the Green functions evaluated by lowest-order truncation of the
Schwinger-Dyson equations are already accurate at the (6-8)% level. This
provides a strong justification for the method and a motivation for its
extension to higher order and to higher dimensions, where the calculation of
the metric is extremely difficult